The overall goal of this Project is to understand the complex processes that regulate contractility in vascular smooth muscle under physiological and pathophysiological conditions, which lead to high blood pressure, atherosclerosis, coronary restenosis, shock or cerebral vasospasm. Contractility is switched on in smooth muscle (SM) via phosphorylation of the regulatory light chain of myosin (RLC) and the level of phosphorylation is dependent upon the opposing activities of the Ca2+/calmodulin dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase, both of which can be regulated by upstream signaling pathways. We, with Project 2, have generated MLCK null mice, which are embryonic lethal, starting at E15.5 with some reaching term, but prior to this embryonic aortae or umbilical vessels display RLC phosphorylation and normal force development in response to Ca 2+. We will test the hypothesis that ubiquitously expressed SM MLCKs are critical for contraction, migration, filament and sarcomere formation in smooth and cardiac muscle respectively, as well as A404SMC """"""""progenitor"""""""" cells (Project 2, Core A) and transformed proepicardial cells (Project 3, Core A);or alternatively that a compensatory kinase(s) accounts for the MLCK activity in MLCK null embryos or that another kinase normally predominants during embryonic development. Preliminary studies suggest that formation of the coronary vessels is defective in MLCK null embryos, thus, we will test the hypothesis that MLCKs are critical for migration of the epicardial cells of the proepicardial organ, the precursors of the coronary vessels with Project 3. The myosin motors underlying cell migration and contractility are also regulated and contribute to the SM contractile phenotype. These mechanisms will be explored using kinetic analysis with a novel recently synthesized fluorescent 3'-amino derivative of ATP. We will test the hypothesis that AM. ADP strongly bound crossbridges play a significant role in maintaining tonic force at low actomyosin activity, slow shortening velocity and low levels of RLC phosphorylation, characteristic features of SM myosins. The proposed studies require extensive interactions with the other projects and Core A and match the central theme of this PPG.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL019242-33
Application #
7746392
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2009-01-01
Budget End
2009-12-31
Support Year
33
Fiscal Year
2009
Total Cost
$625,732
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Mahoney Jr, William M; Gunaje, Jagadambika; Daum, Guenter et al. (2013) Regulator of G-protein signaling - 5 (RGS5) is a novel repressor of hedgehog signaling. PLoS One 8:e61421
Wu, San-Pin; Dong, Xiu-Rong; Regan, Jenna N et al. (2013) Tbx18 regulates development of the epicardium and coronary vessels. Dev Biol 383:307-20
Dong, Xiu Rong; Majesky, Mark W (2012) Restoring elastin with microRNA-29. Arterioscler Thromb Vasc Biol 32:548-51
Hoglund, Virginia J; Majesky, Mark W (2012) Patterning the artery wall by lateral induction of Notch signaling. Circulation 125:212-5
Salmon, Morgan; Gomez, Delphine; Greene, Elizabeth et al. (2012) Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22? promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ Res 111:685-96
Alexander, Matthew R; Moehle, Christopher W; Johnson, Jason L et al. (2012) Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest 122:70-9
Alexander, Matthew R; Murgai, Meera; Moehle, Christopher W et al. (2012) Interleukin-1? modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-?B-dependent mechanisms. Physiol Genomics 44:417-29
Majesky, Mark W; Dong, Xiu Rong; Hoglund, Virginia J (2011) Parsing aortic aneurysms: more surprises. Circ Res 108:528-30
Hoofnagle, Mark H; Neppl, Ronald L; Berzin, Erica L et al. (2011) Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 300:H1707-21
Majesky, Mark W; Dong, Xiu Rong; Regan, Jenna N et al. (2011) Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 108:365-77

Showing the most recent 10 out of 322 publications