Our broad objective is to establish that the natriuretic peptide system (NPS), via direct autocrine effects on the cardiomyocyte and paracrine effects on non-myocyte cardiac cells, is a key regulator of diastolic left ventricular (LV) function. Further, we propose to establish that enhancement of cardiomyocyte NPS activity represents a cardiac specific and effective therapeutic strategy to ameliorate the diastolic dysfunction associated with hypertensive heart disease. The heart failure (HF) syndrome is primarily related to diastolic dysfunction (diastolic HF, DHF) in 40-50% of cases. Therapies that specifically improve diastolic function in DHF are lacking. The natriuretic peptides (atrial and brain natriuretic peptide, ANP and BNP) stimulate production of the intracellular second messenger cGMP via binding to the natriuretic peptide A (NPRA) receptor. While traditionally viewed as circulating hormones that modulate volume and homeostasis and blood pressure via systemic effects, the presence of NPRA receptors on cardiomyocytes and on non-myocyte cardiac cells suggests the potential for autocrine/paracrine effects of the NPS on myocardial structure and function. We have performed preliminary studies utilizing cardiac specific transgenic models with positive and negative functional mutations in the NPRA. Based on our findings, we hypothesize that 1) the NPS enhances LV relaxation via a direct effect on cardiomyocyte function mediated by stimulation of cardiomyocyte NPRA receptors;2) the NPS reduces LV diastolic stiffness via direct effects on cardiac cardiomyocyte NPRA receptors which limit hypertrophy and effects on non-myocyte cardiac cells which limit fibrosis;3) therapeutic strategies based on cardiac specific augmentation of NPS actions improve diastolic function in established hypertensive heart disease in a dose dependent fashion;and 4) therapeutic strategies based on systemic augmentation of NPS levels improve myocardial and chamber diastolic properties via direct myocardial and indirect systemic effects. The proposed studies use cardiac specific transgenesis in mice to study the effect of the NPS directly on cardiomyocytes. Specifically, we will generate models that express gain of function (GOF-NPRA) or dominant negative (DN-NPRA) mutations in NPRA or over-express wild-type NPRA (NPRA) in cardiomyocytes. We will use both conventional and conditionally expressed cardiac specific transgenic models. The use of conditionally expressed transgenes will allow us to begin transgene expression after the establishment of hypertensive heart disease. Over-expression of wild-type NPRA will allow us to explore the dose response of cardiac specific augmentation of NPS actions. Studies are designed to address three specific aims: 1) Determine if the NPS alters LV diastolic function (relaxation and stiffness) and LV structure via effects mediated by cardiomyocytes NPRA;2) Determine if conditional over-expression of wild-type NPRA ameliorates diastolic dysfunction in established hypertensive heart disease;3) determine if chronic systemic administration of brain natriuretic peptide (BNP) ameliorates diastolic dysfunction in established hypertensive heart disease and if these effects are more robust in the presence of functional cardiac NPRA receptors.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL076611-05
Application #
7898653
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2009-08-01
Project End
2010-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
5
Fiscal Year
2009
Total Cost
$345,736
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Fayyaz, Ahmed U; Edwards, William D; Maleszewski, Joseph J et al. (2018) Global Pulmonary Vascular Remodeling in Pulmonary Hypertension Associated With Heart Failure and Preserved or Reduced Ejection Fraction. Circulation 137:1796-1810
Kawakami, Rika; Lee, Candace Y W; Scott, Christopher et al. (2018) A Human Study to Evaluate Safety, Tolerability, and Cyclic GMP Activating Properties of Cenderitide in Subjects With Stable Chronic Heart Failure. Clin Pharmacol Ther 104:546-552
Ichiki, Tomoko; Dzhoyashvili, Nina; Burnett Jr, John C (2018) Natriuretic peptide based therapeutics for heart failure: Cenderitide: A novel first-in-class designer natriuretic peptide. Int J Cardiol :
Cannone, Valentina; Buglioni, Alessia; Sangaralingham, S Jeson et al. (2018) Aldosterone, Hypertension, and Antihypertensive Therapy: Insights From a General Population. Mayo Clin Proc 93:980-990
Saiki, Hirofumi; Petersen, Ivy A; Scott, Christopher G et al. (2017) Risk of Heart Failure With Preserved Ejection Fraction in Older Women After Contemporary Radiotherapy for Breast Cancer. Circulation 135:1388-1396
Win, Sithu; Hussain, Imad; Hebl, Virginia B et al. (2017) Inpatient Mortality Risk Scores and Postdischarge Events in Hospitalized Heart Failure Patients: A Community-Based Study. Circ Heart Fail 10:
Lee, Candace Y W; Huntley, Brenda K; McCormick, Daniel J et al. (2016) Cenderitide: structural requirements for the creation of a novel dual particulate guanylyl cyclase receptor agonist with renal-enhancing in vivo and ex vivo actions. Eur Heart J Cardiovasc Pharmacother 2:98-105
Wan, Siu-Hin; Stevens, Susanna R; Borlaug, Barry A et al. (2016) Differential Response to Low-Dose Dopamine or Low-Dose Nesiritide in Acute Heart Failure With Reduced or Preserved Ejection Fraction: Results From the ROSE AHF Trial (Renal Optimization Strategies Evaluation in Acute Heart Failure). Circ Heart Fail 9:
Mohammed, Selma F; Majure, David T; Redfield, Margaret M (2016) Zooming in on the Microvasculature in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 9:
Patel, Pratik A; Scott, Christopher G; Rodeheffer, Richard J et al. (2016) The Natural History of Patients With Isolated Metabolic Syndrome. Mayo Clin Proc 91:623-33

Showing the most recent 10 out of 124 publications