The Computer, Electronics and Statistics Core will function as a general resource available to all of theprojects. The consolidation of expertise in the areas of computer hardware and software, electronics, dataacquisition, optics, image and signal processing, and statistics will enable the Core to provide support andservices to the various projects in a highly coordinated and efficient manner. The Core provides technicalexpertise and leads software/hardware development efforts supporting the research conducted in theprojects. Technical support includes: i) providing information to all investigators about the use of hardwareand software in operation in their respective laboratories, ii) performing the system administration of thecomputers and the network, and Hi) assisting in the development of small applications required for simpledata analysis. Software developed in this core is related to i) simulation of cardiac excitation in the heart, andii) processing of optical and electrical signals from the heart. System development includes design andintegration of software/hardware systems for data and image acquisition. Statistical support: In collaborationwith the Center for Outcomes Research the Core offers methodological expertise and collaborates in thedesign, implementation, understanding and statistical analysis of research data.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL087226-01
Application #
7221577
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2006-12-01
Project End
2012-08-31
Budget Start
2006-12-01
Budget End
2008-08-31
Support Year
1
Fiscal Year
2007
Total Cost
$479,356
Indirect Cost
Name
Upstate Medical University
Department
Type
DUNS #
058889106
City
Syracuse
State
NY
Country
United States
Zip Code
13210
Ponce-Balbuena, Daniela; Guerrero-Serna, Guadalupe; Valdivia, Carmen R et al. (2018) Cardiac Kir2.1 and NaV1.5 Channels Traffic Together to the Sarcolemma to Control Excitability. Circ Res 122:1501-1516
Rodrigo, M; Climent, A M; Liberos, A et al. (2017) Minimal configuration of body surface potential mapping for discrimination of left versus right dominant frequencies during atrial fibrillation. Pacing Clin Electrophysiol 40:940-946
Rodrigo, Miguel; Climent, Andreu M; Liberos, Alejandro et al. (2017) Highest dominant frequency and rotor positions are robust markers of driver location during noninvasive mapping of atrial fibrillation: A computational study. Heart Rhythm 14:1224-1233
Willis, B Cicero; Pandit, Sandeep V; Ponce-Balbuena, Daniela et al. (2016) Constitutive Intracellular Na+ Excess in Purkinje Cells Promotes Arrhythmogenesis at Lower Levels of Stress Than Ventricular Myocytes From Mice With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation 133:2348-59
Corrado, Domenico; Zorzi, Alessandro; Cerrone, Marina et al. (2016) Relationship Between Arrhythmogenic Right Ventricular Cardiomyopathy and Brugada Syndrome: New Insights From Molecular Biology and Clinical Implications. Circ Arrhythm Electrophysiol 9:e003631
Quintanilla, Jorge G; Pérez-Villacastín, Julián; Pérez-Castellano, Nicasio et al. (2016) Mechanistic Approaches to Detect, Target, and Ablate the Drivers of Atrial Fibrillation. Circ Arrhythm Electrophysiol 9:e002481
Pedrón-Torrecilla, Jorge; Rodrigo, Miguel; Climent, Andreu M et al. (2016) Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. J Cardiovasc Electrophysiol 27:435-42
Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F et al. (2016) Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function. Circ Arrhythm Electrophysiol 9:e003638
Guillem, María S; Climent, Andreu M; Rodrigo, Miguel et al. (2016) Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovasc Res 109:480-92
Rabinovitch, A; Biton, Y; Braunstein, D et al. (2015) Singular Value Decomposition of Optically-Mapped Cardiac Rotors and Fibrillatory Activity. J Phys D Appl Phys 48:

Showing the most recent 10 out of 109 publications