Natural biopolymers heparin and heparan sulfate play critical roles in a large number of biological processes including coagulation, growth and morphology, angiogenesis, immune response, inflammation, and pathogen invasion. In fact, heparin and its derivatives, low molecular weight heparins and fondaparinux, are clinically used as anticoagulants in a number of thrombotic disorders. The fundamental basis for the use of heparin in these disorders is its high affinity and high specificity interaction with antlthrombin, a plasma glycoprotein and inhibitor of coagulation enzymes, especially thrombin, factor Xa and factor IXa. Despite the longstanding use of heparin, it continues to suffer from a number of problems. Better heparin-based anticoagulation therapy is critically needed, especially at a time when its heterogeneous nature can also give rise to problems associated with contaminations. Additionally, although heparin and heparan sulfate play important roles in other physiological and pathological processes, no clinical agent has as yet been devised. The major reason for this state is the phenomenal structural diversity of H/HS, which results in a) the difficulty of preparing HS preparations with defined structural composition and b) the difficulty of studying the interaction of a large number of HS structures with multiple proteins. Major advances are necessary in these two areas to decode H/HS structure - function relationships so as to enable the design of agonists and/or antagonists for modulation of biological processes. This Project 11 of the PEG addresses the fundamental difficulty of studying the interactions of all possible HS sequences with any protein (i.e., area b) above) through a unique technology developed in the laboratory of the PL called combinatorial virtual library screening (CVLS) technology. In combination with Projects I, III and IV, we propose 1) to decipher fundamental aspects of HS structure - function relationships in the coagulation and inflammation system, and 2) to test this enhanced understanding in in vivo animal models, especially for the coagulation system. Thus, we propose to 1) study the importance of specific and non- specific interactions of heparan sulfate with proteins using computational approaches and identify promising structures for in vitro and in vivo investigation; 2) develop computationally designed HS structures as specific activators of heparin cofactor II; and 3) investigate the interaction of designed H/HS with coagulation proteins at a molecular level for development as new clinically useful anticoagulants.

Public Health Relevance

Thrombotic disorders affect 1 in 3 individuals in the US. The proposed research involves the computational design, biochemical evaluation and animal testing of heparan sulfates as modulators of thrombotic disorders.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL107152-05
Application #
8853921
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
2016-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
5
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Virginia Commonwealth University
Department
Type
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Afosah, Daniel K; Verespy 3rd, Stephen; Al-Horani, Rami A et al. (2018) A small group of sulfated benzofurans induces steady-state submaximal inhibition of thrombin. Bioorg Med Chem Lett 28:1101-1105
Periasamy, Srinivasan; Lin, Chia-Hui; Nagarajan, Balaji et al. (2018) Mucoadhesive role of tamarind xyloglucan on inflammation attenuates ulcerative colitis. J Funct Foods 47:1-10
Joseph, Prem Raj B; Sawant, Kirti V; Iwahara, Junji et al. (2018) Lysines and Arginines play non-redundant roles in mediating chemokine-glycosaminoglycan interactions. Sci Rep 8:12289
Kishore, Bellamkonda K; Robson, Simon C; Dwyer, Karen M (2018) CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal 14:109-120
Boothello, Rio S; Patel, Nirmita J; Sharon, Chetna et al. (2018) A Unique Non-Saccharide Mimetic of Heparin Hexasaccharide Inhibits Colon Cancer Stem Cells via p38 MAP Kinase Activation. Mol Cancer Ther :
Abdel Aziz, May H; Desai, Umesh R (2018) Novel heparin mimetics reveal cooperativity between exosite 2 and sodium-binding site of thrombin. Thromb Res 165:61-67
Sepuru, Krishna Mohan; Iwahara, Junji; Rajarathnam, Krishna (2018) Direct detection of lysine side chain NH3+ in protein-heparin complexes using NMR spectroscopy. Analyst 143:635-638
Sepuru, Krishna Mohan; Nagarajan, Balaji; Desai, Umesh R et al. (2018) Structural basis, stoichiometry, and thermodynamics of binding of the chemokines KC and MIP2 to the glycosaminoglycan heparin. J Biol Chem 293:17817-17828
Gangji, Rahaman Navaz; Sankaranarayanan, Nehru Viji; Elste, James et al. (2018) Inhibition of Herpes Simplex Virus-1 Entry into Human Cells by Nonsaccharide Glycosaminoglycan Mimetics. ACS Med Chem Lett 9:797-802
Rajarathnam, Krishna; Sepuru, Krishna Mohan; Joseph, Prem Raj B et al. (2018) Glycosaminoglycan Interactions Fine-Tune Chemokine-Mediated Neutrophil Trafficking: Structural Insights and Molecular Mechanisms. J Histochem Cytochem 66:229-239

Showing the most recent 10 out of 151 publications