In this project we seek to elucidate the mechanisms responsible for the low CBF or ischemia found in the period immediately following severe head injury in man. We hypothesize that ischemia occurs despite adequate cerebral perfusion pressure and is not due to vasospasm of the larger, conducting vessels or too vigorous hyperventilation. As early as possible after injury, we will measure CBF, cerebral blood volume (CBV), AVDO1, AVD lactate, ICP and blood velocity with TECD, and, where clinically indicated, we will perform histological analysis of the brain microcirculation removed at surgery. Moreover, by combining the above data and data from continuous CBF (thermal dilution) and SjvO2 measurements with those from Project 1, we will support that project, and by combining CBV measurements and brain water mapping we will support Project 3.

Project Start
Project End
Budget Start
Budget End
Support Year
19
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Virginia Commonwealth University
Department
Type
DUNS #
City
Richmond
State
VA
Country
United States
Zip Code
23298
Kleindienst, Andrea; Dunbar, Jana G; Glisson, Renee et al. (2013) The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir (Wien) 155:151-64
Fazzina, Giovanna; Amorini, Angela M; Marmarou, Christina R et al. (2010) The protein kinase C activator phorbol myristate acetate decreases brain edema by aquaporin 4 downregulation after middle cerebral artery occlusion in the rat. J Neurotrauma 27:453-61
Hartings, Jed A; Strong, Anthony J; Fabricius, Martin et al. (2009) Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 26:1857-66
Mazzeo, Anna Teresa; Brophy, Gretchen M; Gilman, Charlotte B et al. (2009) Safety and tolerability of cyclosporin a in severe traumatic brain injury patients: results from a prospective randomized trial. J Neurotrauma 26:2195-206
Samuelson, Rod; Mazzeo, Anna; Kunene, Nikki et al. (2006) Synthes Award For Resident Research On Craniofacial And Brain Injury: effect of cyclosporin A, topiramate, or 100% oxygen as proposed ""neuroprotective"" therapies on the neurochemical analytes in patients with severe traumatic brain injury. Clin Neurosurg 53:307-12
Stiefel, Michael F; Tomita, Yoshiyuki; Marmarou, Anthony (2005) Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J Neurosurg 103:707-14
Stiefel, Michael F; Marmarou, Anthony (2002) Cation dysfunction associated with cerebral ischemia followed by reperfusion: a comparison of microdialysis and ion-selective electrode methods. J Neurosurg 97:97-103
Yamamoto, M; Marmarou, C R; Stiefel, M F et al. (1999) Neuroprotective effect of hypothermia on neuronal injury in diffuse traumatic brain injury coupled with hypoxia and hypotension. J Neurotrauma 16:487-500
Barzo, P; Marmarou, A; Fatouros, P et al. (1997) MRI diffusion-weighted spectroscopy of reversible and irreversible ischemic injury following closed head injury. Acta Neurochir Suppl 70:115-8
Marmarou, A; Barzo, P; Fatouros, P et al. (1997) Traumatic brain swelling in head injured patients: brain edema or vascular engorgement? Acta Neurochir Suppl 70:68-70

Showing the most recent 10 out of 14 publications