This Core will be responsible for handling the large-scale genotyping. This Core will be responsible for all the high-throughput genotyping of candidate genes and genetic mapping. Mass Genotyping of individual DNA samples for mapping or association studies of candidate genes will primarily use the TaqMan assay in conjunction with the ABI Prism 700HT Sequence Detection System for single nucleotide polymorphisms (SNPs). In those cases (5-10%) where TaqMan does not work satisfactorily the TaqMan genotyping assay will be supplemented with the Oligonucleotide Ligation Assay (OLA). For high-density SNP frequency mapping of pooled patient samples we will use primer extension in conjunction with denaturing high performance liquid chromatography (DHPLC) detection. The PI's and investigators will identify the autism patients for biological sampling, DNA banking, and genotyping. The Projects, in consultation with this Core, will also determine which genes and SNPs are to be genotyped. In the case of new SNPs, genotype and allele frequency data will be databased and reported to the research community. For genes of particular interest, this Core will provide the necessary DNA sequencing. It will also be responsible obtaining serotonin levels when requested by the Projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS026630-18
Application #
7214780
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
18
Fiscal Year
2006
Total Cost
$185,025
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Griswold, Anthony J; Van Booven, Derek; Cuccaro, Michael L et al. (2018) Identification of rare noncoding sequence variants in gamma-aminobutyric acid A receptor, alpha 4 subunit in autism spectrum disorder. Neurogenetics 19:17-26
Zhu, Zuobin; Lu, Xitong; Yuan, Dejian et al. (2017) Close genetic relationships between a spousal pair with autism-affected children and high minor allele content in cases in autism-associated SNPs. Genomics 109:9-15
Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M (2014) Protein interaction networks reveal novel autism risk genes within GWAS statistical noise. PLoS One 9:e112399
Gaugler, Trent; Klei, Lambertus; Sanders, Stephan J et al. (2014) Most genetic risk for autism resides with common variation. Nat Genet 46:881-5
Hadjixenofontos, Athena; Schmidt, Michael A; Whitehead, Patrice L et al. (2013) Evaluating mitochondrial DNA variation in autism spectrum disorders. Ann Hum Genet 77:9-21
Anney, Richard; Klei, Lambertus; Pinto, Dalila et al. (2012) Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum Mol Genet 21:4781-92
Cukier, Holly N; Lee, Joycelyn M; Ma, Deqiong et al. (2012) The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1. Autism Res 5:385-97
Griswold, Anthony J; Ma, Deqiong; Cukier, Holly N et al. (2012) Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways. Hum Mol Genet 21:3513-23
Casey, Jillian P; Magalhaes, Tiago; Conroy, Judith M et al. (2012) A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Hum Genet 131:565-79
Cuccaro, Michael L; Tuchman, Roberto F; Hamilton, Kara L et al. (2012) Exploring the relationship between autism spectrum disorder and epilepsy using latent class cluster analysis. J Autism Dev Disord 42:1630-41

Showing the most recent 10 out of 204 publications