Nearly two-thirds of the US population is either clinically overweight or obese and almost 10% of the population has adult-onset diabetes. Obesity and diabetes are central elements of a cluster of pathologies collectively referred to as """"""""metabolic syndrome"""""""". Our Center of Biomedical Research Excellence (COBRE) at the Pennington Biomedical Research Center is leading an effort to enhance research on metabolic disease by recruiting accomplished senior investigators and promising young scientists who are mentored to independence by Center investigators. The Pennington COBRE involves five projects from outstanding junior faculty that employ a combination of cellular, molecular, and translational approaches to address questions ranging from neural mechanisms of glucose sensing and energy homeostasis, inflammatory mechanisms linked to adipogenesis, epigenetic programming in obesity, to regulation of mitochondrial biogenesis in adipocytes. Using a combination of in vivo, ex vivo and in vitro approaches, each project will pursue fundamental questions critical to regulation of energy homeostasis and the associated pathologies of metabolic disease linked to expansion of adipose tissue mass during development of obesity.
The Specific Aims of our COBRE in Phase II are to further expand the critical mass of productive investigators engaged in obesity/diabetes research by (a) develop and retain outstanding new junior faculty from within the institution and mentor them to sustainable independent funding (b) recruit outstanding junior and senior faculty engaged in metabolic disease research that complement existing strengths of Center investigators;(c) develop and foster new opportunities for collaborative interactions with institutional colleagues engaged in clinical/translational research, (d) enhance utilization of the outstanding research infrastructure developed within the Cell Biology/Bioimaging and Genomics core facilities in Phase I through development of training modules and outreach activities. Our Phase II COBRE goals are to recruit 5 new faculty to the institution and mentor 10 junior faculty to independent funding as we continue to build a critical mass of scientists devoted to finding solutions to the expanding national health problem of metabolic disease.

Public Health Relevance

Obesity and diabetes affect a large and growing segment of the population but Louisiana is disproportionately affected because of the higher incidence of metabolic disease in our state. The COBRE at Pennington is devoted to discovering cellular mechanisms of metabolic disease and translating these discoveries into more effective treatments that will lessen the burden of chronic disease and improve the quality of life.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
8P20GM103528-07
Application #
8318575
Study Section
Special Emphasis Panel (ZRR1-RI-B (01))
Program Officer
Liu, Yanping
Project Start
2006-09-04
Project End
2016-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
7
Fiscal Year
2012
Total Cost
$2,220,000
Indirect Cost
$720,000
Name
Lsu Pennington Biomedical Research Center
Department
Type
Organized Research Units
DUNS #
611012324
City
Baton Rouge
State
LA
Country
United States
Zip Code
70808
Graf, Brittany L; Zhang, Li; Corradini, Maria G et al. (2018) Physicochemical differences between malanga (Xanthosoma sagittifolium) and potato (Solanum tuberosum) tubers are associated with differential effects on the gut microbiome. J Funct Foods 45:268-276
Stephens, Jacqueline M; Bailey, Jennifer L; Hang, Hardy et al. (2018) Adipose Tissue Dysfunction Occurs Independently of Obesity in Adipocyte-Specific Oncostatin Receptor Knockout Mice. Obesity (Silver Spring) 26:1439-1447
Chang, Ji Suk; Ghosh, Sujoy; Newman, Susan et al. (2018) A map of the PGC-1?- and NT-PGC-1?-regulated transcriptional network in brown adipose tissue. Sci Rep 8:7876
Yu, Sangho; Cheng, Helia; François, Marie et al. (2018) Preoptic leptin signaling modulates energy balance independent of body temperature regulation. Elife 7:
Forney, Laura A; Stone, Kirsten P; Wanders, Desiree et al. (2018) The role of suppression of hepatic SCD1 expression in the metabolic effects of dietary methionine restriction. Appl Physiol Nutr Metab 43:123-130
Burke, Susan J; Batdorf, Heidi M; Burk, David H et al. (2018) Pancreatic deletion of the interleukin-1 receptor disrupts whole body glucose homeostasis and promotes islet ?-cell de-differentiation. Mol Metab :
Sarzynski, Mark A; Ruiz-Ramie, Jonathan J; Barber, Jacob L et al. (2018) Effects of Increasing Exercise Intensity and Dose on Multiple Measures of HDL (High-Density Lipoprotein) Function. Arterioscler Thromb Vasc Biol 38:943-952
Yu, Sangho; François, Marie; Huesing, Clara et al. (2018) The Hypothalamic Preoptic Area and Body Weight Control. Neuroendocrinology 106:187-194
Barber, Jacob L; Kraus, William E; Church, Timothy S et al. (2018) Effects of regular endurance exercise on GlycA: Combined analysis of 14 exercise interventions. Atherosclerosis 277:1-6
Herion, Nils Janis; Kruger, Claudia; Staszkiewicz, Jaroslaw et al. (2018) Embryonic cell migratory capacity is impaired upon exposure to glucose in vivo and in vitro. Birth Defects Res :

Showing the most recent 10 out of 141 publications