The overall goal of the South Carolina Research Center for Recovery from Stroke (SCRCRS) is to enable outstanding multidisciplinary collaborative research in recovery from stroke. Stroke is of unique importance to South Carolina as a disproportionate rate of incidence results in undue economic/social burdens from post-stroke disability. Our organizing concept is that better understanding of the experience-dependent nature of neural plasticity will allow us to investigate and exploit inherent neural recovery processes, develop and translate novel mechanism- based interventional strategies, and ultimately improve the function and quality of life of individuals recovering from stroke.
The specific aims are to: 1) train and mentor a cadre of junior scientists who are skilled in multiple domains; 2) develop innovative scientific core resources designed to advance stroke recovery research in animal and human studies; and 3) promote the long-term viability of the SCRCRS through development of multidisciplinary translational research programs and rigorous evaluation and improvement strategies. The Center is led by a multidisciplinary team, comprised of a PhD biomedical engineer/biomechanical scientist and an MD/clinical stroke expert, coalescing resources and disciplines from schools of medicine and allied health sciences. Scientific cores include the Quantitative Behavioral Assessment and Rehabilitation Core to provide standardized experience and quantitative measurement of behavior and function; Brain Stimulation Core to provide a plasticity modifying adjuvant for treatment and quantitative measurement of plasticity and neurophysiology; Neuroimaging Core to provide quantitative measurement of plasticity and structural and functional connectivity; and Clinical & Translational Tools and Resources Core to facilitate the development of a queriable, secure Stroke Clinical Registry Database via a robust interface with MUSC's CTSA. All Junior Investigators (Jls) will investigate some aspect of stroke recovery, with initial focus on upper extremity function, locomotion and alleviation of depression, using a suite of measurement tools rarely found in stroke recovery research settings. Innovative features of the Center include the interprofessional and multidisciplinary expertise of core leaders and Jls; the integration of motion capture and clinical assessment tools, brain stimulation tools, neuroimaging tools, and resources for biostatistics and patient record management applied to stroke recovery research; and a novel 'multiple source mentoring' approach to prepare the Jls as future leaders in clinical and translational research in recovery from stroke. Extensive institutional support - including flexible funds, new faculty recruitment an capital Improvements - will underwrite the Center's long-term success and viability.

Public Health Relevance

Stroke is a major cause of long-term disability and healthcare expense, costing ~$40.9 billion in the US in 2007. It is the leading cause of long-term disability in the US, affecting -795,000 people/yr, with a surviving cohort of -6.5 million. Despite major progress in stroke prevention and acute treatment, little progress has been made in enhancing recovery. Effective rehabilitation interventions can minimize functional disability, improve qualit of life and reduce costly long-term care expenditures.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM109040-04
Application #
9260004
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Liu, Yanping
Project Start
2014-06-02
Project End
2019-03-31
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Other Health Professions
Type
Sch Allied Health Professions
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29403
Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan et al. (2018) Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo. Brain Stimul 11:727-733
Wilmskoetter, Janina; Martin-Harris, Bonnie; Pearson Jr, William G et al. (2018) Differences in swallow physiology in patients with left and right hemispheric strokes. Physiol Behav 194:144-152
Berthiaume, Andrée-Anne; Grant, Roger I; McDowell, Konnor P et al. (2018) Dynamic Remodeling of Pericytes In Vivo Maintains Capillary Coverage in the Adult Mouse Brain. Cell Rep 22:8-16
Alawieh, Ali; Andersen, Meredith; Adkins, DeAnna L et al. (2018) Acute Complement Inhibition Potentiates Neurorehabilitation and Enhances tPA-Mediated Neuroprotection. J Neurosci 38:6527-6545
Alawieh, Ali; Langley, E Farris; Tomlinson, Stephen (2018) Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci Transl Med 10:
Badran, Bashar W; Dowdle, Logan T; Mithoefer, Oliver J et al. (2018) Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimul 11:492-500
Hartmann, David A; Hyacinth, Hyacinth I; Liao, Francesca-Fang et al. (2018) Does pathology of small venules contribute to cerebral microinfarcts and dementia? J Neurochem 144:517-526
Hanlon, Colleen A; Dowdle, Logan T; Henderson, J Scott (2018) Modulating Neural Circuits with Transcranial Magnetic Stimulation: Implications for Addiction Treatment Development. Pharmacol Rev 70:661-683
Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E et al. (2018) FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident. Med Sci Sports Exerc 50:400-406
VanDerwerker, Catherine J; Ross, Ryan E; Stimpson, Katy H et al. (2018) Combining therapeutic approaches: rTMS and aerobic exercise in post-stroke depression: a case series. Top Stroke Rehabil 25:61-67

Showing the most recent 10 out of 92 publications