The Neuroimaging Core (NI) provides access to state-of-the art neuroimaging facilities and methodologies. COBRE funds will support a Bioengineer (shared with the BSTIM Core) who will oversee the technical aspects and develop new methods to interface image acquisition with stimulation and rehabilitation techniques; a full- time Image Technician who will provide training and assistance for analysis and interpretation of complex measurements; partial effort of an EEG Technician who will provide guidance in techniques for high density EEG and assist with data analyses; and dedicated effort for senior faculty who will provide mentoring and training in rigor, reproducibility and interpretation as well as methods development for human and animal studies.
Specific aims are to: (1) Provide COBRE investigators with turnkey access to modern neuroimaging tools to investigate stroke-recovery related changes in brain morphology, connectivity, metabolism and function; (2) Develop innovative tools to observe the detailed neural response (both short- and long-term) to diverse interventions; 3) Generate high quality, reproducible, quantitative data to help identify neuroimaging ?biomarkers? and thereby become a leader in forming large multi-system quantitative data sets for inclusion in the COBRE Comprehensive Multidisciplinary Database (CMD) as well as national and international data sharing efforts; and 4) Mentor and train COBRE investigators in the acquisition and analysis of complex neuroimaging data so they can investigate and exploit inherent plasticity and develop and translate novel mechanism-based, experience-dependent interventional methods. Continuous progress toward these aims will establish the NI Core as a premier resource in the integration of neuroimaging into stroke rehabilitation studies at MUSC, as well as nationally and internationally. The NI Core will facilitate investigators? access to structural and functional imaging methods such as blood oxygen level dependent (BOLD) magnetic resonance spectroscopy (MRS), arterial spin labeling (ASL), and high density electroencephalography (EEG), enabling them to ask important research questions such as tissue volume associated with the stroke and adaptive plasticity, stroke pathology, correlates of basal metabolism, local estimates of cellular complexity, regional responses to localized brain stimulation and corresponding functional responses. The NI Core?s multimodal, cross-disciplinary, integrative nature encourages collaborative innovation. The ability to use transcranial magnetic stimulation within the scanner (i.e., interleaved TMS/fMRI) makes MUSC one of very few places where investigators can directly examine immediate and longer- term effects of brain stimulation interventions on brain activity and hemodynamics, and investigate the causal nature of induced activity in cortical and subcortical nodes of a brain network. In addition, 7T small animal scanning and two-photon microscopy systems provide sensitive translational tools to investigate mechanisms underlying rehabilitation and cortical stimulation enhancement of neural plasticity and stroke recovery in animal models.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
2P20GM109040-06
Application #
9573499
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
6
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29407
Alawieh, Ali; Langley, E Farris; Tomlinson, Stephen (2018) Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci Transl Med 10:
Badran, Bashar W; Dowdle, Logan T; Mithoefer, Oliver J et al. (2018) Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimul 11:492-500
Hartmann, David A; Hyacinth, Hyacinth I; Liao, Francesca-Fang et al. (2018) Does pathology of small venules contribute to cerebral microinfarcts and dementia? J Neurochem 144:517-526
Hanlon, Colleen A; Dowdle, Logan T; Henderson, J Scott (2018) Modulating Neural Circuits with Transcranial Magnetic Stimulation: Implications for Addiction Treatment Development. Pharmacol Rev 70:661-683
Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E et al. (2018) FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident. Med Sci Sports Exerc 50:400-406
VanDerwerker, Catherine J; Ross, Ryan E; Stimpson, Katy H et al. (2018) Combining therapeutic approaches: rTMS and aerobic exercise in post-stroke depression: a case series. Top Stroke Rehabil 25:61-67
Shih, Andy Y; Hyacinth, Hyacinth I; Hartmann, David A et al. (2018) Rodent Models of Cerebral Microinfarct and Microhemorrhage. Stroke 49:803-810
Wonsetler, Elizabeth C; Miller, Ellie L; Huey, Katherine L et al. (2018) Association Between Altered Hip Extension and Kinetic Gait Variables. Am J Phys Med Rehabil 97:131-133
Seamon, Bryant A; Neptune, Richard R; Kautz, Steven A (2018) Using a Module-Based Analysis Framework for Investigating Muscle Coordination during Walking in Individuals Poststroke: A Literature Review and Synthesis. Appl Bionics Biomech 2018:3795754
Badran, Bashar W; Mithoefer, Oliver J; Summer, Caroline E et al. (2018) Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul 11:699-708

Showing the most recent 10 out of 92 publications