The goal of the Analytical Cytometry Core (ACC) is to provide leading-edge equipment and experienced operators to measure properties of, and isolate, cells and their components, and present the data for internal analysis and external review. Flow cytometry instrumentation in this core resource includes (1) high speed cell sorter (MoFlo) and (2) analytical cytometers (Cyan and FacsCalibur). Flow cytometry instrumentation provides investigators with the tools to analyze and isolate cells at speeds of up to 35,000 cells/second based on multiple fluorescent labels and light scatter properties with high yield (up to 90% based on speed) and extreme purity (99%). Owing to the capability to sort for four populations at a time on multiple parameters, the logistics and cost for the investigators are substantially reduced. A new high throughput plate sampler for the Cyan analyzer provides rapid screening capacity to investigators with large compound libraries who use flow cytometric analysis in compound identification;the addition of a Laser Scanning Cytometer (LSC) has expanded the analytical capacity offered by the ACC to include quantitative tissuebased fluorescence microscopy. This instrumentation collects both listmode fluorescence data and microscopic images and provides users with the capacity to correlate quantitative fluorescent data with qualitative microscopic images on large tissue sections. The LSC is run by specially trained users and managed by a dedicated operator. ACC instrumentation is subject to weekly quality control assessment and routine preventive maintenance and calibration. Data generated in the Core is available through the BRI-net server for further analysis and preparation for presentation or publication. Network-based data processing software is offered by the core and a Laboratory Information Management System (LIMS) is being developed to help track experiment-related meta data and archived file retrieval. During FY 2006, the ACC was used by 44 Cancer Center members from all 5 programs and 3 non-aligned members (64% peer-reviewed usage). Annual budget for this core is $401,799 (43% institutional, 40% user fees);17% ($70,100) is requested from the CCSG.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA033572-27
Application #
8182256
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-12-01
Budget End
2010-11-30
Support Year
27
Fiscal Year
2010
Total Cost
$97,424
Indirect Cost
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Gast, Charles E; Silk, Alain D; Zarour, Luai et al. (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 4:eaat7828
Salgia, Ravi; Kulkarni, Prakash (2018) The Genetic/Non-genetic Duality of Drug 'Resistance' in Cancer. Trends Cancer 4:110-118
Yoon, Sorah; Wu, Xiwei; Armstrong, Brian et al. (2018) An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFR? Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. Mol Ther Nucleic Acids 14:131-141
Yim, John H; Choi, Audrey H; Li, Arthur X et al. (2018) Identification of Tissue-Specific DNA Methylation Signatures for Thyroid Nodule Diagnostics. Clin Cancer Res :
Wang, Tianyi; Fahrmann, Johannes Francois; Lee, Heehyoung et al. (2018) JAK/STAT3-Regulated Fatty Acid ?-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab 27:136-150.e5
Magilnick, Nathaniel; Boldin, Mark P (2018) Molecular Moirai: Long Noncoding RNA Mediators of HSC Fate. Curr Stem Cell Rep 4:158-165
Yun, Xinwei; Zhang, Keqiang; Wang, Jinhui et al. (2018) Targeting USP22 Suppresses Tumorigenicity and Enhances Cisplatin Sensitivity Through ALDH1A3 Downregulation in Cancer-Initiating Cells from Lung Adenocarcinoma. Mol Cancer Res 16:1161-1171
Herrera, Alex F; Rodig, Scott J; Song, Joo Y et al. (2018) Outcomes after Allogeneic Stem Cell Transplantation in Patients with Double-Hit and Double-Expressor Lymphoma. Biol Blood Marrow Transplant 24:514-520
Slavin, Thomas P; Banks, Kimberly C; Chudova, Darya et al. (2018) Identification of Incidental Germline Mutations in Patients With Advanced Solid Tumors Who Underwent Cell-Free Circulating Tumor DNA Sequencing. J Clin Oncol :JCO1800328
Shahin, Sophia A; Wang, Ruining; Simargi, Shirleen I et al. (2018) Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine 14:1381-1394

Showing the most recent 10 out of 1396 publications