The mission of the Bioinformatics Core (BIC) is to provide bioinformatics support for diverse approaches to cancer research in the COHCCC. The BIC collaborates with COHCCC governance committees to promulgate standards, optimize systems and minimize redundancy through continued integration of data, databases, applications and processes for enabling cost effective, collaborative, translational research. Since the last competitive renewal, the BIC has been working with experts in the field to establish a scalable high performance cyber-infrastructure equipped with close to 500 TB tiered storage repository with high bandwidth network connection, integrated cloud computing with internal TBs shared memory servers with more than 4000 hyper-threaded CPU and GPGPU processors, and external cloud computing to maximize both our infrastructure investment and provide infrastructure-on-demand. In addition, the BIC provides integrated laboratory information management systems (LIMS), which harbor research information portals shared among multiple core facilities (e.g., Functional Genomics and Genomic Sequencing, Drug Discovery and Structural Biology, Analytical Cytometry, Small Animal Imaging, and the developing Proteomics and Translational Research cores). The BIC also provides researchers with high-throughput biological data analysis, including integration with high-quality publicly available multi-disease, multi-cohort gene expression datasets. With highly-trained staff working in multidisciplinary teams, the BIC facilitates experimental design, QC/QA, data analysis, integration, annotation, dissemination, visualization and training for researchers. A new subscription-based chargeback policy was implemented in 2009 to offer tiered services to COHCCC members to be included in their grant proposals for adequate chargeback. The usage has nearly doubled from 45 subscribers in 2008 to 78 in 2010, and chargeback revenue has tripled from $46,487 in 2008 to $141,078 in 2010. Between 2007 and 2011, the BIC was used by a total of 88 principal investigators, 67 of whom are COHCCC members, and BIC staff collectively co-authored 52 peer-reviewed publications. The BIC's ongoing goal is to foster comprehensive bioinformatics support for researchers to enable collaborations among, basic, translational, clinical and population sciences researchers.

Public Health Relevance

The overall goal of the Bioinformatics Core facility is to provide COHCCC investigators with high-throughput biological data analysis tools, data management and cyber-infrastructure, and training to foster collaborations and develop modern computational techniques. This goal enables the Cancer Center's mission of developing innovative new disease-fighting strategies in the battle against cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA033572-31
Application #
8764847
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
31
Fiscal Year
2014
Total Cost
$169,609
Indirect Cost
$68,652
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Mendez-Dorantes, Carlos; Bhargava, Ragini; Stark, Jeremy M (2018) Repeat-mediated deletions can be induced by a chromosomal break far from a repeat, but multiple pathways suppress such rearrangements. Genes Dev 32:524-536
Bzymek, Krzysztof P; Puckett, James W; Zer, Cindy et al. (2018) Mechanically interlocked functionalization of monoclonal antibodies. Nat Commun 9:1580
Nguyen, Huong Q; Ruel, Nora; Macias, Mayra et al. (2018) Translation and Evaluation of a Lung Cancer, Palliative Care Intervention for Community Practice. J Pain Symptom Manage 56:709-718
Satheesan, Sangeetha; Li, Haitang; Burnett, John C et al. (2018) HIV Replication and Latency in a Humanized NSG Mouse Model during Suppressive Oral Combinational Antiretroviral Therapy. J Virol 92:
Zhang, Jing; He, Zhiheng; Sen, Subha et al. (2018) TCF-1 Inhibits IL-17 Gene Expression To Restrain Th17 Immunity in a Stage-Specific Manner. J Immunol 200:3397-3406
Sun, Jie; He, Xin; Zhu, Yinghui et al. (2018) SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function. Cell Stem Cell 23:355-369.e9
Miao, Yifei; Ajami, Nassim E; Huang, Tse-Shun et al. (2018) Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Commun 9:292
Sen, Subha; Wang, Fei; Zhang, Jing et al. (2018) SRC1 promotes Th17 differentiation by overriding Foxp3 suppression to stimulate ROR?t activity in a PKC-?-dependent manner. Proc Natl Acad Sci U S A 115:E458-E467
Murad, John P; Kozlowska, Anna K; Lee, Hee Jun et al. (2018) Effective Targeting of TAG72+ Peritoneal Ovarian Tumors via Regional Delivery of CAR-Engineered T Cells. Front Immunol 9:2268
Brown, Christine E; Aguilar, Brenda; Starr, Renate et al. (2018) Optimization of IL13R?2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Mol Ther 26:31-44

Showing the most recent 10 out of 1396 publications