The purpose of the Imaging Core is to provide CF investigators with access to advanced light microscopy technology. The Core maintains three different microscopes for fluorescence light microscopic imaging, reach specialized for specific purposes. One microscope is mainly for fixed specimens and has software for morphometric analysis, and two microscopes have cooled CCD cameras suitable for imaging live cells, one of them is an inverted microscope, and one of them is an upright. In addition, computer stations with software for processing images are maintained, and can handle data from several of the institutional confocal microscopes around the campus. The Core maintains and improves these imaging stations and computer facilities, provides training and supervision of users in the user of imaging technology, and facilitates exchange of information among user of these technologies. Directed by Ulrich Hopfer, M.D., Ph.D., himself a major user, and supervised by Dianne Kube, Ph.D., these facilities attract more than a dozen funded users, and provide educational opportunities for more than 50 students and postdoctoral fellows. This Core is projected to continue this high degree of utilization in the next grant period.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK027651-20
Application #
6588441
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2002-04-01
Project End
2003-03-31
Budget Start
Budget End
Support Year
20
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Type
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Lai, Nicola; M Kummitha, China; Rosca, Mariana G et al. (2018) Isolation of mitochondrial subpopulations from skeletal muscle: Optimizing recovery and preserving integrity. Acta Physiol (Oxf) :e13182
Donnola, Shannon B; Dasenbrook, Elliott C; Weaver, David et al. (2017) Preliminary comparison of normalized T1 and non-contrast perfusion MRI assessments of regional lung disease in cystic fibrosis patients. J Cyst Fibros 16:283-290
Darrah, Rebecca; Nelson, Rebecca; Damato, Elizabeth G et al. (2016) Growth Deficiency in Cystic Fibrosis Is Observable at Birth and Predictive of Early Pulmonary Function. Biol Res Nurs 18:498-504
VanDevanter, Donald R; Morris, Nathan J; Konstan, Michael W (2016) IV-treated pulmonary exacerbations in the prior year: An important independent risk factor for future pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 15:372-9
VanDevanter, D R; Flume, P A; Morris, N et al. (2016) Probability of IV antibiotic retreatment within thirty days is associated with duration and location of IV antibiotic treatment for pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 15:783-790
Jiang, Kai; Jiao, Sen; Vitko, Megan et al. (2016) The impact of Cystic Fibrosis Transmembrane Regulator Disruption on cardiac function and stress response. J Cyst Fibros 15:34-42
Bruscia, Emanuela M; Bonfield, Tracey L (2016) Cystic Fibrosis Lung Immunity: The Role of the Macrophage. J Innate Immun 8:550-563
Hsu, Daniel; Taylor, Patricia; Fletcher, Dave et al. (2016) Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation. Infect Immun 84:2410-21
Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A et al. (2016) Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol 311:L317-27
Than, B L N; Linnekamp, J F; Starr, T K et al. (2016) CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 35:4179-87

Showing the most recent 10 out of 445 publications