The major goal of the Clinical Nutrition Research Unit (CNRU) at the University of Washington is to promote and enhance interdisciplinary nutrition research by bringing together basic science and clinical investigators on a cooperative basis. Because of the multidisciplinary nature of nutrition, close interaction across disciplines and optimal use of resources is necessary to better understand the relationships among diet, health and disease states/ By providing a number of Core facilities, the CNRU integrates and coordinates research activities in the field of nutrition and attempts to foster new interdisciplinary research collaboration, stimulate new research activities, improve nutrition education at multiple levels and facilitate the nutritional management of patients. The four Cores are: 1) a Laboratory Core to provide affiliate investigators with cost-efficient state-of-the-art nutritional assays and to help with new methods. development; 2) a Clinical Research Core to provide facilities and help for investigators with their clinical research, and to provide a patient registry, behavioral psychologist, and biostatistical unit; 3) An Administrative and Enrichment Core that is responsible for the day-to-day administration of the CNRU. This Core also arranges a series of seminars, retreats, and Visiting Professorships, and administers the Pilot and Feasibility and New Investigator Programs that are aimed at stimulating nutrition research by young investigators and by more established investigators new to the field of nutrition in response to evolving research interests at the University of Washington. Two new subcores have been added: A Nutrient-Gene Subcore of the Laboratory Core will provide genetically-defined mouse models for use in studies of nutrient-gene interactions; and a Body Composition and Energy Expenditure Subcore of the Clinical Research Core will provide facilities for measuring body composition and energy expenditure. Thus, the CNRU provides facilities and support for the large and varied nutrition research base of the University, thereby stimulating not only research, but also educational and clinical activities in the area of nutrition.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK035816-13
Application #
2608403
Study Section
Special Emphasis Panel (SRC (19))
Program Officer
Hubbard, Van S
Project Start
1985-09-01
Project End
2000-11-30
Budget Start
1997-12-01
Budget End
1998-11-30
Support Year
13
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Washington
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Shao, Dan; Villet, Outi; Zhang, Zhen et al. (2018) Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nat Commun 9:2935
Rubinow, Katya B; Houston, Barbara; Wang, Shari et al. (2018) Androgen receptor deficiency in monocytes/macrophages does not alter adiposity or glucose homeostasis in male mice. Asian J Androl 20:276-283
den Hartigh, Laura J; Gao, Zhan; Goodspeed, Leela et al. (2018) Obese Mice Losing Weight Due to trans-10,cis-12 Conjugated Linoleic Acid Supplementation or Food Restriction Harbor Distinct Gut Microbiota. J Nutr 148:562-572
Selamet, Umut; Katz, Ronit; Ginsberg, Charles et al. (2018) Serum Calcitriol Concentrations and Kidney Function Decline, Heart Failure, and Mortality in Elderly Community-Living Adults: The Health, Aging, and Body Composition Study. Am J Kidney Dis 72:419-428
Wright, Davene R; Christakis, Dimitri A; Lozano, Paula et al. (2018) Healthy, Wealthy, and Wise? Exploring Parent Comparative Optimism About Future Child Outcomes. MDM Policy Pract 3:2381468318774776
Meek, Thomas H; Matsen, Miles E; Faber, Chelsea L et al. (2018) In Uncontrolled Diabetes, Hyperglucagonemia and Ketosis Result From Deficient Leptin Action in the Parabrachial Nucleus. Endocrinology 159:1585-1594
Du, Dan; Gu, Haiwei; Djukovic, Danijel et al. (2018) Multiplatform Metabolomics Investigation of Antiadipogenic Effects on 3T3-L1 Adipocytes by a Potent Diarylheptanoid. J Proteome Res 17:2092-2101
Vaisar, Tomáš; Couzens, Erica; Hwang, Arnold et al. (2018) Type 2 diabetes is associated with loss of HDL endothelium protective functions. PLoS One 13:e0192616
Anderson, Lindsey J; Tamayose, Jamie M; Garcia, Jose M (2018) Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Mol Cell Endocrinol 464:65-74
Han, Seung Jin; Boyko, Edward J; Kim, Soo Kyung et al. (2018) Association of Thigh Muscle Mass with Insulin Resistance and Incident Type 2 Diabetes Mellitus in Japanese Americans. Diabetes Metab J 42:488-495

Showing the most recent 10 out of 601 publications