C. Abstract (Human Phenotyping) The Human Phenotyping Core (HPC) and its two sub-cores (the Energy Balance and Behavioral sub-cores) directly support the research of NORC members by providing innovative clinical and intervention services to phenotype humans in mechanistic, clinical, and translational studies. The services o f t h e Energy Balance sub-core include methods to quantify body composition, energy expenditure, carbohydrate metabolism, and cardiorespiratory fitness. The services of the Behavioral sub-core include behavioral, cognitive, and psychological assessments; measurement of food intake in laboratory and free-living conditions; design and delivery of behavioral change interventions; and assessment of activity and sedentary behavior in free- living conditions. Over the first 10 years of NORC funding, the HPC: a) provided comprehensive services for human phenotyping in clinical research studies, b) developed and validated innovative phenotyping methods and interventions, c) established quality control procedures, and d) built a growing base of HPC users. In years 1-5, the majority of the HPC's effort focused on adult phenotyping. Over years 6-10, however, the HPC transitioned to include g reater emphasis on novel imaging techniques and methods to phenotype mothers, infants, and children. This is consistent with the NORC's theme of nutrition, obesity, and metabolic health through the lifespan. At each period of the lifespan, we conduct research to understand the mechanisms, prevention, and treatment of obesity; and our research focus areas have evolved to include a) maternal and infant nutritional status, b) pediatric and adulthood obesity, and c) nutritional status in older age to preserve physical and cognitive functionality.
The Aims of the current renewal application to fund years 11-15 are: 1) provide members with a comprehensive suite of innovative energy balance and behavioral services to ongoing funded and collaborative research projects to enable the characterization of human subjects in clinical and translational research studies, and continue to expand services to phenotype individuals at specific stages of life, such as pregnancy and infancy, 2) provide specialist expertise to support clinical and translational research on nutrition, obesity and metabolic health at different stages of life, and continue to enhance our quality control procedures to provide efficient and high quality services, 3) sustain a human tissue bio-repository, including metabolic tissues (muscle, adipose) and biospecimens that are needed for ongoing fundamental and translational studies of nutrition, obesity, and metabolic health relative to pregnancy (placenta, cord blood), infancy (breast milk), and childhood, 4) expand imaging capabilities including food-intake-relevant fMRI, enhanced body composition and metabolism, and rodent imaging to increase the power and quality of our research results, and 5) proactively facilitate increased utilization of the core services; integrate core services with pilot and feasibility studies; and continually monitor and improve utilization and priorities for core services.
These aims build upon the previous 10 years of work and bolster support for NORC members' research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK072476-13
Application #
9475767
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2005-09-15
Project End
Budget Start
2018-05-01
Budget End
2019-04-30
Support Year
13
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Lsu Pennington Biomedical Research Center
Department
Type
DUNS #
611012324
City
Baton Rouge
State
LA
Country
United States
Zip Code
70808
Redman, Leanne M; Smith, Steven R; Burton, Jeffrey H et al. (2018) Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab 27:805-815.e4
Nicklas, Theresa; Islam, Noemi G; Saab, Rabab et al. (2018) Validity of a Digital Diet Estimation Method for Use with Preschool Children. J Acad Nutr Diet 118:252-260
King, Jill L; Fearnbach, S Nicole; Ramakrishnapillai, Sreekrishna et al. (2018) Perceptual Characterization of the Macronutrient Picture System (MaPS) for Food Image fMRI. Front Psychol 9:17
Roe, Brian E; Apolzan, John W; Qi, Danyi et al. (2018) Plate waste of adults in the United States measured in free-living conditions. PLoS One 13:e0191813
Bruce-Keller, Annadora J; Salbaum, J Michael; Berthoud, Hans-Rudolf (2018) Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biol Psychiatry 83:214-223
Yu, Sangho; Münzberg, Heike (2018) Testing Effects of Chronic Chemogenetic Neuronal Stimulation on Energy Balance by Indirect Calorimetry. Bio Protoc 8:
Elbers, Jean P; Brown, Mary B; Taylor, Sabrina S (2018) Identifying genome-wide immune gene variation underlying infectious disease in wildlife populations - a next generation sequencing approach in the gopher tortoise. BMC Genomics 19:64
Kaviani, Sepideh; Schoeller, Dale A; Ravussin, Eric et al. (2018) Determining the Accuracy and Reliability of Indirect Calorimeters Utilizing the Methanol Combustion Technique. Nutr Clin Pract 33:206-216
Peterson, Courtney M; Beyl, Robbie A; Marlatt, Kara L et al. (2018) Effect of 12 wk of resistant starch supplementation on cardiometabolic risk factors in adults with prediabetes: a randomized controlled trial. Am J Clin Nutr 108:492-501
Graf, Brittany L; Zhang, Li; Corradini, Maria G et al. (2018) Physicochemical differences between malanga (Xanthosoma sagittifolium) and potato (Solanum tuberosum) tubers are associated with differential effects on the gut microbiome. J Funct Foods 45:268-276

Showing the most recent 10 out of 759 publications