- Genomics Core Genomic technologies have broadly impacted vision science and have a crifical role in most ofthe research programs carried out at Mass Eye and Ear. The Genomics core provides access to state-of- the-art genomic resources at low cost. Direct access to the Genomics core resources and expertise makes it possible for investigators to efficiently obtain high-quality data and eliminates the long queues for services such as next-generation sequencing frequently experienced at off-site centers. Importantly, the expert Genomics core personnel can help investigators plan appropriate experiments and assist with analyses (including troubleshooting)-services that would not be readily available elsewhere. The efficient timeline for data acquisition increases the overall productivity of the core investigators as well as improves the quality of the research. Genomic data is an important feature of many of the MEEI research programs and is especially important for the translational studies. The Genomics core personnel are experts in the genetics and genomics of eye disease, creating opportunities for collaboration among investigators using this resource. Overall direct access to Genomics core personnel and resources greatly enhances the quality of the research and ultimate accomplishments of the core investigators. The Genomics core is directed by Dr. Eric Pierce, an expert in the genetics and genomics of inherited ocular disease. Services provided by the Genomics core includes: Sanger sequencing, whole exome sequencing, selective exon capture and next generation sequencing (NGS) for ocular disease genes (RetNeT, glaucoma, optic neuropathy, mitochondrial DNA), genome-wide genotyping (both common and rare variation), copy number variation (CNV) using array CGH (comparative genomic hybridization), high-density genotypes and MLPA (multiplex ligation-dependent probe amplification), and RNA sequencing (RNA-seq) for transcriptome analyses.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY014104-17
Application #
10017265
Study Section
Special Emphasis Panel (ZEY1)
Project Start
2002-09-01
Project End
2024-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
17
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Massachusetts Eye and Ear Infirmary
Department
Type
DUNS #
073825945
City
Boston
State
MA
Country
United States
Zip Code
02114
Iglesias, Adriana I; Mishra, Aniket; Vitart, Veronique et al. (2018) Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases. Nat Commun 9:1864
Chou, Jonathan C; Cousins, Clara C; Miller, John B et al. (2018) Fundus Densitometry Findings Suggest Optic Disc Hemorrhages in Primary Open-Angle Glaucoma Have an Arterial Origin. Am J Ophthalmol 187:108-116
Fan, Bao Jian; Chen, Xueli; Sondhi, Nisha et al. (2018) Family-Based Genome-Wide Association Study of South Indian Pedigrees Supports WNT7B as a Central Corneal Thickness Locus. Invest Ophthalmol Vis Sci 59:2495-2502
Okunuki, Yoko; Mukai, Ryo; Pearsall, Elizabeth A et al. (2018) Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proc Natl Acad Sci U S A 115:E6264-E6273
Cousins, Clara C; Chou, Jonathan C; Greenstein, Scott H et al. (2018) Resting nailfold capillary blood flow in primary open-angle glaucoma. Br J Ophthalmol :
Gupta, Priya R; Pendse, Nachiket; Greenwald, Scott H et al. (2018) Ift172 conditional knock-out mice exhibit rapid retinal degeneration and protein trafficking defects. Hum Mol Genet 27:2012-2024
Laíns, Inês; Kelly, Rachel S; Miller, John B et al. (2018) Human Plasma Metabolomics Study across All Stages of Age-Related Macular Degeneration Identifies Potential Lipid Biomarkers. Ophthalmology 125:245-254
Shiga, Yukihiro; Akiyama, Masato; Nishiguchi, Koji M et al. (2018) Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum Mol Genet 27:1486-1496
Khawaja, Anthony P; Cooke Bailey, Jessica N; Wareham, Nicholas J et al. (2018) Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat Genet 50:778-782
Tsoka, Pavlina; Matsumoto, Hidetaka; Maidana, Daniel E et al. (2018) Effects of BNN27, a novel C17-spiroepoxy steroid derivative, on experimental retinal detachment-induced photoreceptor cell death. Sci Rep 8:10661

Showing the most recent 10 out of 296 publications