In the armamentarium of techniques available for contemporary biomedical research carried out with humans at the basic, translational, and clinical level, magnetic resonance (MR) methods have become critical and indispensible, often providing non-invasive measurement capabilities that are simply unavailable from alternative approaches. The central aim of this Biotechnology Research Center (BTRC) grant is to significantly advance such MR based measurement capabilities and their biomedical applications in humans by: 1) developing novel image acquisition and reconstruction technologies and engineering solutions through five TRD (Technology Research and Development) projects, and 2) enabling a large number of Collaborative and Service projects to acquire advanced structural, functional, and physiological information to investigate human organ function in health and disease, targeting both human brain and the abdominal organs. This central aim will be pursued with a focus on high (3 and 4 Tesla) and particularly ultrahigh (7 Tesla and higher) magnetic fields, which provide numerous advantages but also pose several significant technological challenges that must be overcome. This is a unique feature and a particular strength of this BTRC;ultrahigh field MR and numerous accompanying methods for human studies were pioneered in this BTRC, yielding previously unavailable detection sensitivity and precision. This BTRC is also home to some of the most advanced, unique and rare high field MR instrumentation in the world. Collectively, these unique instruments and the proposed methodological developments are expected to be transformative for MR technology and its applications.

Public Health Relevance

Magnetic resonance (MR) imaging is a non-invasive is method that can be used for clinical, preclinical, translational and basic research studies with humans. This grant aims to significantly advance the capabilities of the MR technique through new technological developments and engineering solutions, targeting studies of function and circuitry of the human brain, and physiology of the heart, kidney, and prostate of the human abdomen.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
2P41EB015894-21
Application #
8474229
Study Section
Special Emphasis Panel (ZEB1-OSR-E (J2))
Program Officer
Liu, Christina
Project Start
1997-06-01
Project End
2018-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
21
Fiscal Year
2013
Total Cost
$1,786,768
Indirect Cost
$438,584
Name
University of Minnesota Twin Cities
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe (2018) Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI. Sci Rep 8:4741
Sorce, Dennis J; Michaeli, Shalom (2018) RAFFn relaxation rate functions. J Magn Reson 293:28-33
Gillick, Bernadette; Rich, Tonya; Nemanich, Samuel et al. (2018) Transcranial direct current stimulation and constraint-induced therapy in cerebral palsy: A randomized, blinded, sham-controlled clinical trial. Eur J Paediatr Neurol 22:358-368
Patriat, RĂ©mi; Cooper, Scott E; Duchin, Yuval et al. (2018) Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. Neuroimage 178:198-209
Adanyeguh, Isaac M; Monin, Marie-Lorraine; Rinaldi, Daisy et al. (2018) Expanded neurochemical profile in the early stage of Huntington disease using proton magnetic resonance spectroscopy. NMR Biomed 31:
Park, Young Woo; Deelchand, Dinesh K; Joers, James M et al. (2018) AutoVOI: real-time automatic prescription of volume-of-interest for single voxel spectroscopy. Magn Reson Med 80:1787-1798
Wilson, Sylia; Malone, Stephen M; Hunt, Ruskin H et al. (2018) Problematic alcohol use and hippocampal volume in a female sample: disentangling cause from consequence using a co-twin control study design. Psychol Med 48:1673-1684
Marja?ska, Ma?gorzata; Deelchand, Dinesh K; Hodges, James S et al. (2018) Altered macromolecular pattern and content in the aging human brain. NMR Biomed 31:
Ring, Hattie L; Zhang, Jinjin; Klein, Nathan D et al. (2018) Establishing the overlap of IONP quantification with echo and echoless MR relaxation mapping. Magn Reson Med 79:1420-1428
Kemper, Valentin G; De Martino, Federico; Emmerling, Thomas C et al. (2018) High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T. Neuroimage 164:48-58

Showing the most recent 10 out of 331 publications