The National Resource for Accelerator Mass Spectrometry (AMS) was established in 1999 to enable biomedical researchers to accurately quantify very low levels of radioisotopes while exploring fundamental issues in biology. In this renewal, we will expand our present capabilities by developing a fully integrated HPLC AMS to increase our capabilities for metabolic measurements which our collaborators require. We will develop methods to study biochemical pathways and cellular processes down to the level of the single cell. Finally we will develop and validate methods for the application of AMS in human translational research which is a growing area of demand by collaborators and service users. Throughout the tenure of the grant we will continue to provide a resource to the research community that will include service to investigators familiar with AMS, training of investigators in the technology and dissemination of the Resource. Towards these goals, our specific aims are to: 1.) Increased throughput of AMS through direct coupling to separatory instruments. 2.) Increase the value and information content of AMS measurements by combining molecular identities with quantitation of defined isolates for pathway analysis from very small cellular, animal, and human samples. 3.) Provide quantitation of biological systems using multiple isotopic tracers within sampled materials. 4.) Provide high throughput precision quantitation for collaborative and service clients.

Public Health Relevance

This Center provides new technology for filling the unique niche of ultra-high sensitivity isotope quantitation in biomedical studies. The technology is ideal for quantifying endpoints without perturbing the natural metabolism in model systems so that results are relevant and it allows studied to be done in humans to assure that models represent the human situation and for translational research. This technology supports over 60funded investigators.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
8P41GM103483-14
Application #
8299450
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Program Officer
Sheeley, Douglas
Project Start
2000-09-01
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
14
Fiscal Year
2012
Total Cost
$1,709,225
Indirect Cost
$661,713
Name
Lawrence Livermore National Laboratory
Department
Biology
Type
Organized Research Units
DUNS #
827171463
City
Livermore
State
CA
Country
United States
Zip Code
94550
Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong et al. (2018) COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin. Mol Cancer Ther 17:474-483
Hummel, Jessica M; Madeen, Erin P; Siddens, Lisbeth K et al. (2018) Pharmacokinetics of [14C]-Benzo[a]pyrene (BaP) in humans: Impact of Co-Administration of smoked salmon and BaP dietary restriction. Food Chem Toxicol 115:136-147
Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong et al. (2017) Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice. Mol Cancer Ther 16:376-387
Enright, Heather A; Falso, Miranda J S; Malfatti, Michael A et al. (2017) Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model. PLoS One 12:e0181996
Wang, Yi; Villalta, Peter W; Peng, Lijuan et al. (2017) Mass Spectrometric Characterization of an Acid-Labile Adduct Formed with 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and Albumin in Humans. Chem Res Toxicol 30:705-714
Malfatti, Michael A; Enright, Heather A; Be, Nicholas A et al. (2017) The biodistribution and pharmacokinetics of the oxime acetylcholinesterase reactivator RS194B in guinea pigs. Chem Biol Interact 277:159-167
Stornetta, Alessia; Zimmermann, Maike; Cimino, George D et al. (2017) DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine. Chem Res Toxicol 30:388-409
Wang, Si-Si; Zimmermann, Maike; Zhang, Hongyong et al. (2017) A diagnostic microdosing approach to investigate platinum sensitivity in non-small cell lung cancer. Int J Cancer 141:604-613
Abu Aboud, Omran; Habib, Samy L; Trott, Josephine et al. (2017) Glutamine Addiction in Kidney Cancer Suppresses Oxidative Stress and Can Be Exploited for Real-Time Imaging. Cancer Res 77:6746-6758
Kim, Jeffrey; Stewart, Benjamin; Weiss, Robert H (2016) Extraction and Quantification of Tryptophan and Kynurenine from Cultured Cells and Media Using a High Performance Liquid Chromatography (HPLC) System Equipped with an Ultra-Sensitive Diode Array Detector. Bio Protoc 6:

Showing the most recent 10 out of 69 publications