In the last decade the NIH has invested billions of dollars to place cutting-edge MS instrumentation in laboratories across the US. Several other Federal entities, along with private and academic institutions, have likewise contributed, such that a research institute without at least one state-of-the-art MS system is now the exception to the rule. For all this investment, biomedical researchers lacking MS expertise can now submit samples, mostly to core facilities but also to expert collaborators, for protein analysis. This analysis most often results in a list of proteins present in a sample. More seasoned facilities wil have in-house expertise in PTM analysis and may, for example, offer phosphorylation site analysis on targeted proteins or complex mixtures. Considering where the field of proteomics was just fifteen years ago-low throughput peptide mass mapping from gel bands-broad access to today's protein analysis is remarkable. Doubtless this success stems from the sizeable investment of NIH and other funding agencies in fundamental technology development. That said, global protein quantification methodologies, either relative or absolute, are not routine even for most expert laboratories. The result is highly rationed access to arguably the most valuable and telling type of proteomic data. Understanding the networks that regulate complex organisms and their diseases will require wide and pervasive access to these critical comprehensive technologies. The NCQBCS will catalyze and expedite this transformation in quantitative biology.

Public Health Relevance

The National Center for Quantitative Biology of Complex Systems seeks to develop next-generation protein measurement technologies and to make these methods accessible to the broad community. These essential technologies will be developed in the context of a cadre of Driving Biomedical Projects (DBPs). The DBP diversity ensures that the NCQBCS will fulfill its most critical mission: to empower all biomedical researchers, with their sundry models and samples by advancing and making accessible protein quantification technologies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM108538-02
Application #
9310451
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Krepkiy, Dmitriy
Project Start
2016-07-05
Project End
2021-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Hutchins, Paul D; Russell, Jason D; Coon, Joshua J (2018) LipiDex: An Integrated Software Package for High-Confidence Lipid Identification. Cell Syst 6:621-625.e5
Jha, Pooja; McDevitt, Molly T; Gupta, Rahul et al. (2018) Systems Analyses Reveal Physiological Roles and Genetic Regulators of Liver Lipid Species. Cell Syst 6:722-733.e6
Hebert, Alexander S; Prasad, Satendra; Belford, Michael W et al. (2018) Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer. Anal Chem 90:9529-9537
Mitok, Kelly A; Freiberger, Elyse C; Schueler, Kathryn L et al. (2018) Islet proteomics reveals genetic variation in dopamine production resulting in altered insulin secretion. J Biol Chem 293:5860-5877
Lee, Ji-Hoon; Mand, Michael R; Kao, Chung-Hsuan et al. (2018) ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci Signal 11:
Rhoads, Timothy W; Burhans, Maggie S; Chen, Vincent B et al. (2018) Caloric Restriction Engages Hepatic RNA Processing Mechanisms in Rhesus Monkeys. Cell Metab 27:677-688.e5
Chen, Zhengwei; Yu, Qing; Hao, Ling et al. (2018) Site-specific characterization and quantitation of N-glycopeptides in PKM2 knockout breast cancer cells using DiLeu isobaric tags enabled by electron-transfer/higher-energy collision dissociation (EThcD). Analyst 143:2508-2519
Jiang, Xiaoyue; Xiang, Feng; Jia, Chenxi et al. (2018) Relative Quantitation of Neuropeptides at Multiple Developmental Stages of the American Lobster Using N, N-Dimethyl Leucine Isobaric Tandem Mass Tags. ACS Chem Neurosci 9:2054-2063
Lapointe, Christopher P; Stefely, Jonathan A; Jochem, Adam et al. (2018) Multi-omics Reveal Specific Targets of the RNA-Binding Protein Puf3p and Its Orchestration of Mitochondrial Biogenesis. Cell Syst 6:125-135.e6
Overmyer, Katherine A; Tyanova, Stefka; Hebert, Alex S et al. (2018) Multiplexed proteome analysis with neutron-encoded stable isotope labeling in cells and mice. Nat Protoc 13:293-306

Showing the most recent 10 out of 32 publications