This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The """"""""Activation Induced Deaminase"""""""" (AID-protein) is potentially involved in RNA editing in human lymphocytes. In search for possible interacting proteins, that could function in the assumed recruitment of AID to specific RNAs, we have employed MALDI-ion trap MS/MS analysis to identify proteins that are co-purified with flag/HA-tagged AID. We have also identified sites of phosphorylation on AID at a site that appears to play an important role in regulating AID activity. Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates somatic mutation and class switch recombination in B lymphocytes by introducing uracil:guanine mismatches into DNA. Repair pathways process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region DNA. However, AID can also produce off-target DNA damage, including mutations in oncogenes. Therefore, stringent regulation of AID is required for maintaining genomic stability during maturation of the antibody response. It has been proposed that AID phosphorylation at serine 38 (S38) regulates its activity, but this has not been tested in vivo. Using a combination of mass spectrometry and immunochemical approaches, we found that in addition to S38, AID is also phosphorylated at position threonine 140 (T140). Mutation of either S38 or T140 to alanine does not impact catalytic activity, but interferes with class switching and somatic hypermutation in vivo. This effect is particularly pronounced in haploinsufficient mice where AID levels are limited. Although S38 is equally important for both processes, T140 phosphorylation preferentially affects somatic mutation, suggesting that posttranslational modification might contribute to the choice between hypermutation and class switching. A manuscript describing this work has been published: K.M. McBride, A. Gazumyan, E.M. Woo, T.A. Schwickert, B.T. Chait, M.C. Nussenzweig, """"""""Regulation of class switch recombination and somatic mutation by AID phosphorylation"""""""", J Exp Med. 205 (2008) 2585-94.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000862-37
Application #
8169094
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2010-03-01
Project End
2011-02-28
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
37
Fiscal Year
2010
Total Cost
$2,321
Indirect Cost
Name
Rockefeller University
Department
Miscellaneous
Type
Other Domestic Higher Education
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Xue, John Z; Woo, Eileen M; Postow, Lisa et al. (2013) Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell 27:47-59
Indiani, Chiara; O'Donnell, Mike (2013) A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 18:312-23

Showing the most recent 10 out of 67 publications