This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. This is a continuing proposal for the Liddington laboratory, describing our overall program in structural biology at the SSRL. The major focuses are anthrax toxin and virulence factors from other high priority pathogens and emerging diseases, and their interactions with host factors, as well as host proteins involved in cell migration and inflammation. The work involves ab initio structure determination by MAD phasing, studies of protein-inhibitor complexes for rational drug design, and complexes with neutralizing antibodies for designing immune therapeutics. I report highlights of our studies for the 2005-2008 period in the context of our earlier work at SSRL, as well as our ongoing and future studies. This work illustrates how the SSRL has played a central and critical role in most aspects of our science ? using its tunability for primary structure determination/phasing;and/or the high brightness, collimation and stability of the SSRL source for the collection of high resolution data from demanding crystals. And all of this made possible and much more pleasant through the dedication of the outstanding User Support Group.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001209-31
Application #
8170178
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2010-05-01
Project End
2011-02-28
Budget Start
2010-05-01
Budget End
2011-02-28
Support Year
31
Fiscal Year
2010
Total Cost
$4,738
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Kupitz, Christopher; Olmos Jr, Jose L; Holl, Mark et al. (2017) Structural enzymology using X-ray free electron lasers. Struct Dyn 4:044003
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504

Showing the most recent 10 out of 604 publications