GPRTase catalyzes the pyrophosphorolysis of 5?-purine nucleotides. Mutations in GPRTase are associated with Lesch-Hyhan disease, a major clinical neurodegenerative disorder. Parasitic organsims such as malaria and schistosomes cannot perform de novo purine biosynthesis and thus depend on the ability to salvage purines from host nucleotides. Thus HGPRTase is an excellent therapeutic target, provided that sufficient discrimination can be achieved between the human and parasitic enzymes. This is especially important in the case of malaria, as strains resistant to the existing antibiotics are becoming prevalent world wide. We have recently collected data on the complex between human HGPRTase bound to inorganic pyrophosphate and the transition state inhibitor to 2.2E on X-9B. The refined structure clearly identified the binding mode of the transition state analog, bound magnesium ion and pyrophosphate, as well as the interacting protein ligands. This structure also identifies the interactions responsible for stabilization of the oxycarbonium intermediate. We have very recently collected data to 2.0E of the malarial enzyme bound to the same set of inhibitory ligands. This represents the first report of the malarial enzyme crystallizing and will provide the opportunity to design malaria specific inhibitors.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001633-16
Application #
6120404
Study Section
Project Start
1998-09-30
Project End
1999-08-31
Budget Start
Budget End
Support Year
16
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Vongsvivut, Jitraporn; Fernandez, Jason; Ekgasit, Sanong et al. (2004) Characterization of supported cylinder-planar germanium waveguide sensors with synchrotron infrared radiation. Appl Spectrosc 58:143-51
Masip, Lluis; Pan, Jonathan L; Haldar, Suranjana et al. (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185-9
Huang, Raymond Y; Miller, Lisa M; Carlson, Cathy S et al. (2003) In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33:514-21
Rashidzadeh, Hassan; Khrapunov, Sergei; Chance, Mark R et al. (2003) Solution structure and interdomain interactions of the Saccharomyces cerevisiae ""TATA binding protein"" (TBP) probed by radiolytic protein footprinting. Biochemistry 42:3655-65
Uchida, Takeshi; Takamoto, Keiji; He, Qin et al. (2003) Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 328:463-78
Taylor, Colleen M; Watton, Stephen P; Bryngelson, Peter A et al. (2003) Inner-sphere complexation of cobalt(II) 2,9-dimethyl-1,10-phenanthroline ([Co(neo)]2+) with commercial and sol-gel derived silica gel surfaces. Inorg Chem 42:312-20
Kiselar, J G; Maleknia, S D; Sullivan, M et al. (2002) Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. Int J Radiat Biol 78:101-14
Swisher, Jennifer F; Su, Linhui J; Brenowitz, Michael et al. (2002) Productive folding to the native state by a group II intron ribozyme. J Mol Biol 315:297-310
Dhavan, Gauri M; Crothers, Donald M; Chance, Mark R et al. (2002) Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 315:1027-37
Uchida, Takeshi; He, Qin; Ralston, Corie Y et al. (2002) Linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of the Tetrahymena ribozyme. Biochemistry 41:5799-806

Showing the most recent 10 out of 68 publications