This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The overall objective of this study is to investigate therapeutic efficacy of our gene delivery systems in mouse hindlimb ischemic model. We have successfully demonstrated an efficient in vivo gene (DNA or siRNA) delivery using biocompatible polymers (poly ?-amino ester for DNA delivery) and lipids (lipidoid for siRNA delivery) developed in Langer group. We are planning to investigate the in vivo feasibility of our gene delivery systems for treatment of cardiovascular diseases. 1. The first specific aim is to treat hindlimb ischemia with a lipid-mediated injection of siRNA for apoptotic molecules (e.g. SHP-1). Silencing of pro-apoptotic factors which are highly expressed in ischemic tissues could reduce cell apoptosis caused by no blood flow in ischemic tissues by blocking apoptotic signal pathway in the cells in ischemic regions, which may prevent limb muscle degeneration after ischemic event. 2. The second specific aim is to treat hindlimb ischemia with a polymer-mediated injection of angiogenic factor DNA (e.g. VEGF). Delivery of DNA for angiogenic factors could enhance angiogenesis process in ischemic limb muscle. However, our previous study showed that local injection of reporter DNA (luciferase) using the polymeric vectors into limb muscle did not show significant reporter protein expression in muscle tissues (Anderson et al., Proc Natl Acad Sci USA 2004;101:16028-16033). Thus, we are also considering the local injection of human endothelial cells or human mesenchymal stem cells in vitro genetically modified with VEGF DNA using our polymer-based delivery system as an alternative strategy for therapeutic angiogenesis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005959-20
Application #
7956933
Study Section
Special Emphasis Panel (ZRG1-SBIB-P (40))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
20
Fiscal Year
2009
Total Cost
$8,190
Indirect Cost
Name
Duke University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Tang, Xinyan; Jing, Liufang; Richardson, William J et al. (2016) Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 34:1316-26
Hodgkinson, Conrad P; Bareja, Akshay; Gomez, José A et al. (2016) Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 118:95-107
Schmeckpeper, Jeffrey; Verma, Amanda; Yin, Lucy et al. (2015) Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol 85:215-25
Roos, Justus E; McAdams, Holman P; Kaushik, S Sivaram et al. (2015) Hyperpolarized Gas MR Imaging: Technique and Applications. Magn Reson Imaging Clin N Am 23:217-29
He, Mu; Robertson, Scott H; Kaushik, S Sivaram et al. (2015) Dose and pulse sequence considerations for hyperpolarized (129)Xe ventilation MRI. Magn Reson Imaging 33:877-85
Huang, Lingling; Walter, Vonn; Hayes, D Neil et al. (2014) Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res 20:1566-75
Huang, Jing; Guo, Jian; Beigi, Farideh et al. (2014) HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. J Mol Cell Cardiol 66:157-64
Yuan, Ying; Gilmore, John H; Geng, Xiujuan et al. (2014) FMEM: functional mixed effects modeling for the analysis of longitudinal white matter Tract data. Neuroimage 84:753-64
He, Mu; Kaushik, S Sivaram; Robertson, Scott H et al. (2014) Extending semiautomatic ventilation defect analysis for hyperpolarized (129)Xe ventilation MRI. Acad Radiol 21:1530-41
Benner, Eric J; Luciano, Dominic; Jo, Rebecca et al. (2013) Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature 497:369-73

Showing the most recent 10 out of 239 publications