The structure of an ATP-bound kinesin motor domain has been predicted and conformational differences relative to the known ADP-bound form of the protein were identified,* as reported in reference [96]. The differences should be attributed to force-producing ATP hydrolysis. Candidate ATP-kinesin structures were obtained by simulated annealing, by placement of the ATP gamma-phosphate in the crystal structure of ADP-kinesin, and by inter-atomic distance constraints. The choice of such constraints was based on mutagenesis experiments, which identified Gly234 as one of the gamma-phosphate sensing residues, as well as on structural comparison of kinesin with the homologous ncd motor and with G proteins. The prediction of nucleotide-dependent conformational differences reveals an allosteric coupling between the nucleotide pocket and the microtubule binding site of kinesin. Interactions of ATP with Gly234 and Ser202 trigger structural changes in the motor domain, the nucleotide acting as an allosteric modifier of kinesin's microtubule-binding state. We suggest that in the presence of ATP kinesin's putative microtubule binding regions (L8, L12, L11, alpha4, alpha5 and alpha6) form a face complementary in shape to the microtubule surface. In the presence of ADP, the microtubule binding face adopts a more convex shape relative to the ATP-bound form, reducing kinesin's affinity to the microtubule.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR005969-12S1
Application #
6583790
Study Section
Project Start
2001-08-01
Project End
2002-07-31
Budget Start
Budget End
Support Year
12
Fiscal Year
2002
Total Cost
$68,666
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Shim, Jiwook; Banerjee, Shouvik; Qiu, Hu et al. (2017) Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nanoscale 9:14836-14845
Wolfe, Aaron J; Si, Wei; Zhang, Zhengqi et al. (2017) Quantification of Membrane Protein-Detergent Complex Interactions. J Phys Chem B 121:10228-10241
Decker, Karl; Page, Martin; Aksimentiev, Aleksei (2017) Nanoscale Ion Pump Derived from a Biological Water Channel. J Phys Chem B 121:7899-7906
Radak, Brian K; Chipot, Christophe; Suh, Donghyuk et al. (2017) Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems. J Chem Theory Comput 13:5933-5944
Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V et al. (2016) Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli. Biochemistry 55:5714-5725
Belkin, Maxim; Aksimentiev, Aleksei (2016) Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores. ACS Appl Mater Interfaces 8:12599-608
Poudel, Kumud R; Dong, Yongming; Yu, Hang et al. (2016) A time course of orchestrated endophilin action in sensing, bending, and stabilizing curved membranes. Mol Biol Cell 27:2119-32
Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A et al. (2015) Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 54:2104-16
Belkin, Maxim; Chao, Shu-Han; Jonsson, Magnus P et al. (2015) Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano 9:10598-611
Shen, Rong; Han, Wei; Fiorin, Giacomo et al. (2015) Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. PLoS Comput Biol 11:e1004368

Showing the most recent 10 out of 371 publications