This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We propose to study conformational changes of proteins or peptides and their self-aggregation properties. Conformational changes include changes in the secondary structures in protein/peptides, such as helix, sheet, coil, turn, etc. Peptide or protein aggregation is a field of great current interest, because its relation to neurodegenerative diseases, such as Alzheimers and Parkinsons diseases. For, at least, some of these diseases, self-aggregation is facilitated by structure changes in proteins/peptides. A well-known example is the helix-sheet transitions in prion, associated with the mad cow disease. Therefore, part of our interests is to study the helix-sheet, sheet-coil, and helix-coil transitions in proteins/peptides, and some of their aggregation processes. We approach these problems using statistical mechanics methods, such as partition functions, transfer matrices, methodology of phase transitions, and master equations, etc. For simple systems, analytic results can be obtained by imposing on the large-N (number of monomers) approximation. However, for realistic systems, dimensions of the transfer matrices become very large, computation thus becomes numerically challenging. A statistical mechanical approach to self-aggregation processes based on stochastic methods and complex networks also becomes numerically demanding very quick as aggregate size increases. This is mainly because to build up the transition rate information needed for the interaction network, we need to carry out molecular dynamics calculation involving oligomers and monomers. We therefore request CPU time from Pittsburgh Supercomputer Center.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-20
Application #
8171934
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2010-08-01
Project End
2013-07-31
Budget Start
2010-08-01
Budget End
2013-07-31
Support Year
20
Fiscal Year
2010
Total Cost
$1,388
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Shafee, Rebecca; Buckner, Randy L; Fischl, Bruce (2015) Gray matter myelination of 1555 human brains using partial volume corrected MRI images. Neuroimage 105:473-85

Showing the most recent 10 out of 292 publications