The Fanconi DNA repair pathway is required for rescue of stalled or collapsed replication forks. Fanconi Anemia (FA) is caused by inherited mutation of Fanconi genes. FA patients develop bone marrow failure (BMF) in childhood, with survivors frequently developing clonal progression. We identified a role for emergency (stress) granulopoiesis (EG) in BMF and clonal progression in FA. EG is an episodic process for granulocyte production in response to infectious challenge. During EG, S phase is shortened and FancC and F expression increase. Unlike wild type mice, Fancc-/- mice did not develop granulocytosis upon stimulation of EG. Repeated EG challenge in Fancc-/- mice induced either BMF, with apoptosis of HSC and progenitors, or clonal progression. Treatment of Fancc-/- mice with an IL1-R antagonist protected them from these adverse consequences. IL1? is an essential cytokine for EG; inducing myeloid lineage commitment, and G-CSF expression. During the S phase, Atr activates p53 and apoptosis of cells with unrepaired replication fork damage. In Fancc-/- mice, Tp53-haplo- insufficiency rescued granulocytosis during EG; delaying BMF but accelerating clonal progression. In Fancc-/- mice, increasing activity of Atr/p53 occurred with each unsuccessful EG episode; associated with BMF. In contrast, Atr/p53 activity decreased with consecutive, successful EG cycles in Fancc-/-Tp53+/- mice. We hypothesize unsuccessful PMN production in FA during EG prevents activation of unknown negative regulatory pathways; sustaining cell cycle checkpoint activity and HSC/GMP expansion signals. This induces BMF and accumulation of mutations that lead to clonal progression. We will pursue this through three aims:
Aim 1 : Define molecular triggers for termination of emergency granulopoiesis and the role of this process in BMF in FA. We will investigate contribution of PMN density to apoptosis and BMF during unsuccessful EG in Fancc-/- mice. The impact of PMN bone marrow density on known EG-related pathways will be determined in Wt vs Fancc-/- mice, and novel pathways identified in non-biased studies.
Aim 2 : Identify events associated with emergency granulopoiesis-induced clonal progression in FA. We will define events involved in clonal progression in Fancc-/- mice by studying leukemia suppressor pathways that mediate EG termination and by non-biased approaches. Results will be compared to gene expression profiles in CD34+ bone marrow cells from human Fanconi Anemia to identify potential translational targets.
Aim 3 : Investigate potential translational targets to delay BMF or clonal progression in FA. We will determine the impact of novel pathways that are activated during EG on BMF and/or clonal progression in murine genetic models. Relevant intermediates with small molecule inhibitors will be tested in pre-clinical studies. The goal of these studies is to define molecular mechanisms for BMF and/or clonal progression during recurrent, unsuccessful EG attempts in FA. This may suggest therapeutic approaches to decrease morbidity due to anemia and infection, or bridge patients to definitive treatments such as stem cell/bone marrow transplant.

Public Health Relevance

Fanconi Anemia (FA) is an inherited disorder characterized by the inability to repair forms of DNA-damage including collapsed or stalled replication forks, and interstrand cross-links. Many FA patients develop bone marrow failure in childhood; a potentially fatal complication. In these studies, we investigate the role of bone marrow stress during the innate immune response on bone marrow failure and clonal progression in FA.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK121354-03
Application #
10102241
Study Section
Molecular and Cellular Hematology Study Section (MCH)
Program Officer
Hattangadi, Shilpa Manohar
Project Start
2019-04-01
Project End
2023-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
3
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611