This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The faithful inheritance of prokaryotic genetic material requires the directed movement and positioning of chromosomes and plasmids to daughter cells at cell division. This process, called partition or segregation, is mediated by functionally homologous par systems comprised of a cis-acting centromere-like DNA site(s) and two proteins, ParA and ParB. The Escherichia coli P1 plasmid partition apparatus has served as a paradigm for partition. P1 ParA is a 44 kDa Walker type ATPase that drives plasmid separation at the final step of partition. P1 ParB is a 38 kDa DNA-binding protein that mediates the initial steps in segregation;partition complex formation and pairing. In partition complex formation, ParB and the E. coli protein, integration host factor (IHF), bind cooperatively to the ~74 bp parS centromere-like site, which contains multiple A- and B-Boxes, to form the partition complex. Although the P1 Par system has been biochemically well characterized, a detailed mechanistic understanding of partition is lacking due, in large part, to the dearth of structural information on partition proteins and their complexes. We attempt to obtain three dimensional structures of the complexes of these components by solution x-ray scattering to understand molecular mechanism of partition. We have constructed a structural model of the truncated ParB-IHF-parS partition complex, based on the available high resolution structures of its components. Our goals are to first verify that model by solution x-ray scattering, and further build three-dimensional structural models of larger partition complexes involving full length ParB and different types of parS, eventually the pre-segregation complex ParB-IHF-ParA(ATP)-parS.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-14
Application #
7954928
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2009-01-01
Project End
2009-12-31
Budget Start
2009-01-01
Budget End
2009-12-31
Support Year
14
Fiscal Year
2009
Total Cost
$8,688
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D et al. (2014) Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium. J Biol Chem 289:8818-27
Poor, Catherine B; Wegner, Seraphine V; Li, Haoran et al. (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci U S A 111:4043-8

Showing the most recent 10 out of 100 publications