This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. 5N-1H spin relaxation is a powerful method for elucidating protein backbone dynamics. In order to derive as much information as possible from the experimental data a theoretical approach is needed which matches the integrity of currently available data. We have shown that the slowly relaxing local structure (SRLS) approach is capable of accomplishing this. Dominant phenomena such as dynamical coupling between the local motion of the probe (e.g., N-H bond) and the global tumbling of the protein, and general features of local geometry, are explicitly included in SRLS. In recent work we have focused on the geometric aspects, in particular the symmetry of the mode-coupling potential, which reflects the local geometry about the 15N site. The symmetry of the potential depends on the symmetry of the local diffusion/local ordering frame, M, and the symmetry of the local director frame, C, which are illustrated below top. We found that the particular rhombic symmetry of the M frame is of the 'nearly planar Ym-Ym' type, in agreement with the stereo-chemistry of the peptide plane and the N-H site. (crankshaft fluctuations and peptide-plane reorientation of adjacent carbon bonds in peptide backbone axis) are functionally important internal motions, which necessarily involve rhombic spatial restrictions, can be treated satisfactorily with SRLS whereas the model free approach is not able to explicitly allow for them. We found that a proper SRLS theory is required to discern such functionally important motions. We demonstrated this with examples of NMR relaxation data from adenylate kinase, calmodulin, binase and ribonuclease H. With mode-coupling and the local geometry properly accounted for, SRLS appears to match the quality of current 15N relaxation data in proteins. Thus SRLS provides insightful information on backbone dynamics which can be related directly to function.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR016292-06
Application #
7420503
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2006-09-15
Project End
2007-08-31
Budget Start
2006-09-15
Budget End
2007-08-31
Support Year
6
Fiscal Year
2006
Total Cost
$15,848
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Smith, Andrew K; Freed, Jack H (2012) Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study. Chem Phys Lipids 165:348-61
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706

Showing the most recent 10 out of 72 publications