Low-level exposure (1-50 ppb) arsenic causes a multitude of toxic effects. The new drinking water standard for arsenic (10 ppb) is based on the occurrence of bladder cancer. The mechanism(s) by which arsenic produces bladder cancer are unknown. Additionally the toxic effects of low-level arsenic exposure to produce bladder injury have not been adequately examined. Our studies will examine mechanisms of low-level arsenic exposure to bladder tissue. An immortalized human epithelial cell line (UTOtsa) will be the primary model system. In preliminary studies UROtsa cells were shown to be capable of biotransforming inorganic arsenic to more toxic methylated metabolites and low-level (1-50 ppb) arsenic chemical species were cytotoxic to the cells.
Our Aims are to: 1.) Determine the role of biotransformation of arsenic in bladder to produce sub-cytotoxic effects. The biotransformation of inorganic arsenic will be manipulated to determine which arsenic metabolite is the ultimate toxicant. 2.) Determine if the low-level arsenic exposure to the bladder is producing toxicity via proteotoxic mechanisms. This study will examine if arsenic species produce toxic effects via direct interaction with critical sulfhydryl targets. 3.) Determine if the low-level arsenic exposure to the bladder produces toxicity via an oxidative stress mechanism. The production of reactive oxygen species and the ensuing toxic effects will be profiled for various arsenic chemical species, 4.) Determine if the low-level arsenic exposure to the bladder is affecting the ubiquitin pathway and its toxic consequences. Arsenic has been shown to alter the processing of proteins in a cell. Our studies show low-level arsenic to cause and an accumulation of ubiquinated proteins. Our studies will characterize this accumulation, identify if specific proteins are accumulated, and determine the impact of these accumulated proteins on cell viability. 5.) Determine if biomarkers of arsenic toxicity to the bladder result from the preceding studies. Bladder samples from surgical patients will be used for in vitro toxicity studies with arsenic to determine if we see similar effects to those seen with the cells and if the potential biomarkers are present (ubiquinated proteins). Overall, these studies will clarify the toxic effects of low-level arsenic in a human bladder model and provide potential biomarkers for arsenic-induced bladder injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-20
Application #
7792433
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
20
Fiscal Year
2009
Total Cost
$211,430
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Delikhoon, Mahdieh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ Pollut 242:938-951
Hammond, Corin M; Root, Robert A; Maier, Raina M et al. (2018) Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings. Environ Sci Technol 52:1156-1164
Yan, Ni; Zhong, Hua; Brusseau, Mark L (2018) The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Res 149:386-393
Madeira, Camila L; Field, Jim A; Simonich, Michael T et al. (2018) Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). J Hazard Mater 343:340-346
Liu, Pengfei; Rojo de la Vega, Montserrat; Sammani, Saad et al. (2018) RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 115:E10352-E10361
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138
Yan, Ni; Liu, Fei; Liu, Boyang et al. (2018) Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process. Environ Sci Pollut Res Int :
Dehghani, Mansooreh; Sorooshian, Armin; Nazmara, Shahrokh et al. (2018) Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicol Environ Saf 164:277-282
Keshavarzi, Behnam; Abbasi, Sajjad; Moore, Farid et al. (2018) Contamination Level, Source Identification and Risk Assessment of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust of an Important Commercial Center in Iran. Environ Manage 62:803-818
Dodson, Matthew; de la Vega, Montserrat Rojo; Harder, Bryan et al. (2018) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol 341:106-113

Showing the most recent 10 out of 497 publications