(Overall Core: Maier and Zhang) The University of Arizona Superfund Research program (UA SRP) addresses the unique human health risks encountered in the US Southwest, an area with a rich history and future of mining. The Southwest has distinct geologic and climatic attributes that affect human health and exposures to pollution. Groundwater in Southwest regions with rich ore deposits often has elevated arsenic levels, leading to exposure from drinking water. Exposure also occurs by inhalation and ingestion of arsenic-associated mining dusts transported from mining sites into the interior of homes and to exterior environments. Importantly, arsenic exposure has been linked to the development of diabetes. Vulnerable populations residing near mining sites, including Native Americans and Hispanic communities, exhibit increased incidence of diabetes. Our goal is to determine how chronic exposure to mine wastes that contain arsenic contributes to the development of diabetes. We will then use this information to help predict exposures and associated health outcomes as well as to inform public health prevention strategies in communities that neighbor mine waste sites. To achieve this goal, we have five research projects and four cores that will: 1) characterize how chronic mine waste arsenic exposure in mining impacted areas is linked to diabetogenic outcomes through mediation of Nrf2 signaling; 2) determine how the gut microbiome and mining waste mineral properties influence arsenic species transformation, bioavailability, and toxicity; 3) investigate the influence of capping material quality on success of mine waste revegetation to enhance cap and plant remediation technology; 4) model exposures to mining waste contaminants, accounting for socio-demographics, to understand risk factors that drive development of diabetes; 5) mitigate the human impacts of exposure to mining waste through effective interaction with stakeholders including regulators, the mining industry, and affected communities; 6) serve as a global resource for human and environmental health issues associated with metal mining; and 7) train and graduate professionals who are equipped to address complex 21st century environmental hazardous waste problems (Aim 7). The expected outcome of this UA SRP effort is a measurable reduction in diabetes (and other diseases) in mining communities and perhaps beyond.

Public Health Relevance

(Overall Core: Maier and Zhang) The University of Arizona Superfund Research Program (UA SRP) addresses the unique human health risks arising from exposure to arsenic in the US Southwest, an area with a rich history and future of mining. Here, disadvantaged mining communities experience several routes of arsenic exposure, and Native American communities in particular exhibit increased diabetes prevalence. Our goal is to build a mechanistic model of the contributions of chronic mine waste-arsenic exposure to the development of diabetes and associated metabolic disease to inform risk assessment tools that can be used to predict exposures and associated health outcomes and to inform public health prevention and interventions in communities that neighbor mine waste sites.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004940-31
Application #
9841023
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Carlin, Danielle J
Project Start
1997-04-01
Project End
2025-01-31
Budget Start
2020-04-01
Budget End
2021-01-31
Support Year
31
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Arizona
Department
Miscellaneous
Type
Earth Sciences/Resources
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276

Showing the most recent 10 out of 497 publications