Superfund site xenobiotics and other environmental toxicants are human health hazards whose toxicity is, in part, associated with altered patterns of gene expression. The goal of this project is to provide molecular mechanisms and models for exposure, focusing on the classic xenobiotic receptors (XenRs) PXR and CAR, and their induction of gene networks encoding the Phase I, II and III clearance pathways. Accordingly, to define the chemical space of XenRs in response to environmental toxins, in Aim II we will initiate a comparative chemical library screen using high throughput (HT) cell based luciferase reporter assays. Recently, we have determined that the nuclear receptor ERalpha is capable of responding to anticoagulants, antibacterial and anti-inflammatory drugs thus identifying it as a candidate xenobiotic sensor. Therefore as part of this Aim we will include ERalpha in the above XenRs screen. Some of our HT screens will include extracts gathered from Superfund sites by the Research Translation Core. Comparative gene expression studies will be conducted in Aim II to establish the overlap of ERalpha dependent gene regulation with known PXR and CAR target genes. The in vivo relevance will be established using a humanized hPXR/hCAR reporter mouse.
In Aim III we will determine how XenRs control the xenobiotic response at the genome-wide level. Chromatin immunoprecipitation coupled with massively parallel deep sequencing (ChlPSeq) will be used to identify PXR, CAR and ERalpha cistromes, before and after treatment with high affinity agonists to reveal unique and common (core) xenobiotic networks. The aggregate binding sites will comprise a xenobiotic cistrome. Finally, in Aim I, we describe a new HT screening platform called NHR Transcriptional Promoter Ontology which allows us to explore xenobiotic regulation by all human NHRs (+/- ligands) by screening against a panel of ~300 drug metabolism reporter constructs comprised of P450 and conjugation enzyme and transporter sets. This is a unique opportunity to redefine the molecular basis of NHR-xenobiotic regulation and will provide a new roadmap for future study. We will collaborate with the Research Translation Core and Community Engagement Core to share this work with our SRP tribal science partners, industry, EPA, and ATSDR.

Public Health Relevance

This proposal is directed at developing and implementing new scientific approaches to identify the transcriptional regulatory responses elicited by xenobiotics and pollutants found at Superfund sites. Our studies will provide advanced insight into the molecular mechanisms that lead to environmental illness and dramatically improve our understanding of the consequences of exposure to Superfund contaminants.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES010337-14
Application #
8833281
Study Section
Special Emphasis Panel (ZES1-JAB-J)
Project Start
Project End
2016-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
14
Fiscal Year
2015
Total Cost
$361,771
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Tõldsepp, Kadri; Zhang, Jingbo; Takahashi, Yohei et al. (2018) Mitogen-activated protein kinases MPK4 and MPK12 are key components mediating CO2 -induced stomatal movements. Plant J 96:1018-1035
Li, Zixing; Takahashi, Yohei; Scavo, Alexander et al. (2018) Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci U S A 115:E4522-E4531
Hoffmann, Hanne M; Gong, Ping; Tamrazian, Anika et al. (2018) Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Mol Cell Endocrinol 461:143-154
Zhong, Zhenyu; Liang, Shuang; Sanchez-Lopez, Elsa et al. (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560:198-203
Wei, Zong; Yoshihara, Eiji; He, Nanhai et al. (2018) Vitamin D Switches BAF Complexes to Protect ? Cells. Cell 173:1135-1149.e15
Caussy, Cyrielle; Hsu, Cynthia; Lo, Min-Tzu et al. (2018) Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. Hepatology :
McNulty, Reginald; Cardone, Giovanni; Gilcrease, Eddie B et al. (2018) Cryo-EM Elucidation of the Structure of Bacteriophage P22 Virions after Genome Release. Biophys J 114:1295-1301
Song, Na-Young; Zhu, Feng; Wang, Zining et al. (2018) IKK? inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways. Proc Natl Acad Sci U S A 115:E812-E821
Song, Isabelle Jingyi; Yang, Yoon Mee; Inokuchi-Shimizu, Sayaka et al. (2018) The contribution of toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice. Int J Cancer 142:81-91
Hoffmann, Hanne; Pandolfi, Erica; Larder, Rachel et al. (2018) Haploinsufficiency of Homeodomain Proteins Six3, Vax1, and Otx2, Causes Subfertility in Mice Via Distinct Mechanisms. Neuroendocrinology :

Showing the most recent 10 out of 404 publications