We identified loss-of-function mutations in the gene encoding the secreted growth factor progranulin (PGRN) as a major cause of familial frontotemporal lobar degeneration with ubiquitin and TDP-43-positive inclusions (FTLD-U). The exact role of PGRN in neurons has yet to be established, however, the loss of functional PGRN in FTLD-U implicates its essential function in neuronal survival. The identification of TDP-43 as the pathological protein, not only in patients with FTLD-U with mutations in PGRN, but also in the majority of patients with ALS and in 20-30% of pathologically confirmed Alzheimer's disease (AD) patients further suggests a role for the TDP-43 protein in a unifying neurodegenerative disease mechanism underlying these disorders. The recent identification of mutations in TDP-43 as a direct cause of neurodegeneration in sporadic and familial patients with ALS strongly supports this notion. Our working hypothesis is that the PGRN/TDP-43 axis plays a role in multiple neurodegenerative diseases including AD. In this project we will use both genetic and proteomic methods to help understand the role of PGRN and TDP-43 in AD and other neurodegenerative disorders.
The Specific Aims of this project are: 1. To determine the role of genetic variants in PGRN and TARDBP (TDP-43) in the development and presentation of AD. We will perform genetic association studies of PGRN and TARDBP in Caucasian and African/American AD case-control populations and study the effect of common genetic variability on PGRN and TDP-43 expression levels, TDP-43 pathology and disease. 2. To identify novel PGRN and TDP-43 interacting proteins using somatic brain transgenic technology. We will use somatic brain transgenic technology to express dual affinity tagged PGRN and TDP-43 proteins in the mouse brain to identify binding partners of both PGRN and TDP-43. Proteins will be identified by proteomic technologies. Subsequent studies will validate whether PGRN/TDP-43 proteins interact in human brain tissue and are altered by disease state. The proposed studies are relevant to fully appreciate the contribution of genetic variants in PGRN and TARDBP to the development and presentation of AD. Identifying the protein networks of PGRN and TDP-43 will be critical for understanding the pathways of neurodegeneration mediated by PGRN and TDP- 43 and may lead to the identification of novel therapeutic targets.

Public Health Relevance

This proposal is designed to enhance our understanding of the protein networks of PGRN and TDP-43 and to determine whether genetic factors perturbing this network may contribute to the development and presentation of Alzheimer's disease. Unveiling the genetic and molecular pathways that regulate PGRN and TDP-43 lead to novel targets that can be exploited for therapeutic actions aimed at preventing or delaying neurodegenerative diseases

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG016574-11
Application #
7624825
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J1))
Project Start
2009-05-01
Project End
2014-04-30
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
11
Fiscal Year
2009
Total Cost
$179,897
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Allen, Mariet; Wang, Xue; Burgess, Jeremy D et al. (2018) Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases. Alzheimers Dement 14:352-366
Stricker, Nikki H; Lundt, Emily S; Edwards, Kelly K et al. (2018) Comparison of PC and iPad administrations of the Cogstate Brief Battery in the Mayo Clinic Study of Aging: assessing cross-modality equivalence of computerized neuropsychological tests. Clin Neuropsychol :1-25
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71
Bove, Riley M; Patrick, Ellis; Aubin, Cristin McCabe et al. (2018) Reproductive period and epigenetic modifications of the oxidative phosphorylation pathway in the human prefrontal cortex. PLoS One 13:e0199073
La Joie, Renaud; Ayakta, Nagehan; Seeley, William W et al. (2018) Multisite study of the relationships between antemortem [11C]PIB-PET Centiloid values and postmortem measures of Alzheimer's disease neuropathology. Alzheimers Dement :
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169
Sun, Wenyan; Samimi, Hanie; Gamez, Maria et al. (2018) Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci 21:1038-1048
Zhao, Na; Liu, Chia-Chen; Qiao, Wenhui et al. (2018) Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry 83:347-357
Graff-Radford, Jonathan; Rabinstein, Alejandro A; Lesnick, Timothy G et al. (2018) Microinfarcts and blood pressure trajectories: response to Dr Niu et al. J Hum Hypertens 32:385

Showing the most recent 10 out of 1014 publications