Two major challenges to advance research in pediatric renal disease are: (1) there are too few investigators entering pediatric nephrology research and (2) young investigators have inadequate opportunities to move from postdoctoral training to independent investigator. Therefore, emphasis should be placed on the enhancement ofthe research career of new scientists interested in pediatric renal research. The Pilot and Feasibility Projects can help fill this important gap in the development of new, talented pediatric nephrologists as well as Ph.D. scientists. Furthermore, the availability of these pilot projects makes it possible for senior investigators to move in new research directions or enter the field of kidney research from another discipline. In this proposal we describe the means to achieve the goal of increasing the number and quality of scientists involved in Pediatric Nephrology research centered around the theme of """"""""kidney development: Cell Fate and Precursors of Disease in the Young and Adult"""""""". To achieve those goals, we propose an effective Pilot and Feasibility program administration with: a) clear eligibility criteria, b) a rigorous process for evaluation and approval of projects, c) broad and exciting recruitment plans to attract new young investigators, and d) proven strategies to facilitate the recruitment of women and minorities. An additional goal is to ensure the appropriate mentoring of junior scientists by providiing protected time, resources and broad intellectual interactions to maximize their chances for success in academic life.
Rapid advances in the field of Pediatric Nephrology research are hamperred by the small size of the research workforce. This Pilot and Feasibility program will encourage young and established investigators to take up research relevant to kidney development and disease and speed the acquisition of kniowledge that can be applied to treatment of children with renal and urological diseases.
Liu, Hongbing; Chen, Shaowei; Yao, Xiao et al. (2018) Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles. Development 145: |
Neubauer, Bjoern; Schrankl, Julia; Steppan, Dominik et al. (2018) Angiotensin II Short-Loop Feedback: Is There a Role of Ang II for the Regulation of the Renin System In Vivo? Hypertension 71:1075-1082 |
Gomez, R Ariel; Sequeira-Lopez, Maria Luisa S (2018) Renin cells in homeostasis, regeneration and immune defence mechanisms. Nat Rev Nephrol 14:231-245 |
Sequeira-Lopez, Maria Luisa S; Gomez, R Ariel (2018) Preserving kidney health during intensive blood pressure control. Nat Rev Nephrol 14:537-538 |
Chevalier, Robert L (2018) Evolution, kidney development, and chronic kidney disease. Semin Cell Dev Biol : |
Mohamed, Tahagod; Sequeira-Lopez, Maria Luisa S (2018) Development of the renal vasculature. Semin Cell Dev Biol : |
Gomez, R Ariel; Lopez, Maria Luisa S Sequeira (2017) Plasticity of Renin Cells in the Kidney Vasculature. Curr Hypertens Rep 19:14 |
Oka, Masafumi; Medrano, Silvia; Sequeira-L?pez, Maria Luisa S et al. (2017) Chronic Stimulation of Renin Cells Leads to Vascular Pathology. Hypertension 70:119-128 |
Song, Renfang; Lopez, Maria Luisa S Sequeira; Yosypiv, Ihor V (2017) Foxd1 is an upstream regulator of the renin-angiotensin system during metanephric kidney development. Pediatr Res 82:855-862 |
Chevalier, Robert L (2017) Evolutionary Nephrology. Kidney Int Rep 2:302-317 |
Showing the most recent 10 out of 40 publications