Understanding the molecular processes involved in the development and functional organization of biological systems, as well as their alterations in disease states, requires precise measurements of nucleic acid- and protein-level properties of cellular machinery across different cell types and developmental time points. This is particularly difficult to achieve in the human brain due to its cellular complexity and inaccessibility for experimentation. Here, we propose a Center with a multi-disciplinary group of investigators that will develop upon several cutting-edge genomics approaches in a unique and innovative way to elucidate molecular networks underlying human brain development and evolution. This will be achieved through the generation and exploration of integrated multi-dimensional genomic scale data generated from single cells and tissues of developing and adult human and non-human primate (NHP; chimpanzee and macaque) brains. We will also use these new sources of information to facilitate the identification of regulatory mutations in autism spectrum disorders (ASD) as well as to elucidate common and cell type specific molecular networks compromised in ASD. Finally, we implement approaches to model and functionally characterize of human-specific and ASD-associated regulatory mutations in the context of mouse brain development. Our proposed Center couples these research efforts with extensive training opportunities in human and comparative genomics. This organizational structure combines the expertise of each individual key investigator and establishes a CEGS that is capable of much more than each individual working alone and whose resources will create capabilities that are much more than the sum of its parts. Our work will pave the way for reconstructing molecular networks in human development and disease states, and provide a clear path to new and more effective treatments of major disorders.

Public Health Relevance

The identification and characterization of functional genomic elements in human and non-human primate neurodevelopment may lead to development of new and more effective treatments of major brain disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH106934-03
Application #
9113615
Study Section
National Human Genome Research Institute Initial Review Group (GNOM)
Program Officer
Senthil, Geetha
Project Start
2014-09-19
Project End
2019-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Yale University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
Gandal, Michael J; Zhang, Pan; Hadjimichael, Evi et al. (2018) Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362:
Girdhar, Kiran; Hoffman, Gabriel E; Jiang, Yan et al. (2018) Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat Neurosci 21:1126-1136
Kozlenkov, Alexey; Li, Junhao; Apontes, Pasha et al. (2018) A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Sci Adv 4:eaau6190
Doostparast Torshizi, Abolfazl; Duan, Jubao; Wang, Kai (2018) Transcriptional network analysis on brains reveals a potential regulatory role of PPP1R3F in autism spectrum disorders. BMC Res Notes 11:489
Gandal, Michael J; Haney, Jillian R; Parikshak, Neelroop N et al. (2018) Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359:693-697
Finucane, Hilary K; Reshef, Yakir A; Anttila, Verneri et al. (2018) Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet 50:621-629
Mi, Da; Li, Zhen; Lim, Lynette et al. (2018) Early emergence of cortical interneuron diversity in the mouse embryo. Science 360:81-85
de la Torre-Ubieta, Luis; Stein, Jason L; Won, Hyejung et al. (2018) The Dynamic Landscape of Open Chromatin during Human Cortical Neurogenesis. Cell 172:289-304.e18
Khan, Atlas; Liu, Qian; Wang, Kai (2018) iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes. BMC Bioinformatics 19:501
Zhu, Ying; Sousa, André M M; Gao, Tianliuyun et al. (2018) Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362:

Showing the most recent 10 out of 39 publications