Learning to respond automatically to stimuli in the environment allows individuals to operate efficiently under stable conditions. However, under changing conditions, the ability to flexibly override automatic responses is essential for optimizing behavior. Our preliminary data from the previous funding cycle suggest that adolescent alcohol exposure impairs behavioral flexibility, with effects persisting into adulthood. Specifically, we find that binge drinking during human adolescence is associated with heightened sensitivity of the attention system to reward-associated cues. Similarly, adolescent intermittent ethanol (AIE) exposure in rats results in enhanced approach to reward-associated cues. Currently, we don?t know whether these forms of behavioral inflexibility are related to the tendency to express habitual actions that are relatively inflexible and associated with chronic alcohol exposure. Furthermore, we don?t know whether either behavioral tendency correlates with the hypo- frontal connectivity also associated with AIE, nor whether manipulation of frontal circuits can modulate these forms of behavioral flexibility. Answering these questions is critically important, as habitual responses to reward-associated cues may facilitate compulsive alcohol use and contribute to relapse among people with alcohol use disorders (AUDs). Replacing habitual responses to alcohol cues with new actions yielding better outcomes is a key element of recovery from AUDs. While we know much about the neural regulation of habitual versus goal-directed responding, particularly in animal models, and we have some idea about the effects of adult alcohol exposure, we understand much less about the impact of adolescent alcohol exposure on such behavioral flexibility. We propose a unique translational approach to probe the neurobiological bases of the ability to form and to flexibly overcome automatic actions and to evaluate theoretically based interventions to bidirectionally modulate behavioral flexibility. Our core hypothesis, supported by our preliminary data, is that adolescent binge alcohol exposure promotes both an overreliance on stimulus- response (S-R) action selection strategy (habit) and hypersensitivity to reward conditioning in adulthood via common alterations in shared underlying neural circuits. Moreover, the relationship between reliance on habit and sensitivity to reward conditioning is mediated by neural circuit changes impairing top-down control of responses to salient exogenous cues. We now propose to use resting-state fMRI to identify differences in brain circuit function associated with impairment in overriding automatic S-R associations and sensitivity to reward conditioning. We will also test whether bidirectional manipulation of frontal cortex can promote or reduce top- down control over behavior, thereby ameliorating or mimicking the impairment associated with adolescent alcohol exposure. This work will identify objective targets for use in developing novel treatments to promote flexible, goal-directed actions over deleterious automatic actions. This approach may substantially improve our ability to cope with the public health challenges of AUDs, a leading cause worldwide of preventable death.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Comprehensive Center (P60)
Project #
5P60AA011605-24
Application #
10078814
Study Section
Special Emphasis Panel (ZAA1)
Project Start
Project End
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
24
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Harper, Kathryn M; Knapp, Darin J; Criswell, Hugh E et al. (2018) Vasopressin and alcohol: a multifaceted relationship. Psychopharmacology (Berl) 235:3363-3379
Boschen, Karen E; Gong, Henry; Murdaugh, Laura B et al. (2018) Knockdown of Mns1 Increases Susceptibility to Craniofacial Defects Following Gastrulation-Stage Alcohol Exposure in Mice. Alcohol Clin Exp Res 42:2136-2143
Jaramillo, Anel A; Randall, Patrick A; Stewart, Spencer et al. (2018) Functional role for cortical-striatal circuitry in modulating alcohol self-administration. Neuropharmacology 130:42-53
Vetreno, Ryan P; Lawrimore, Colleen J; Rowsey, Pamela J et al. (2018) Persistent Adult Neuroimmune Activation and Loss of Hippocampal Neurogenesis Following Adolescent Ethanol Exposure: Blockade by Exercise and the Anti-inflammatory Drug Indomethacin. Front Neurosci 12:200
Broadwater, Margaret A; Lee, Sung-Ho; Yu, Yang et al. (2018) Adolescent alcohol exposure decreases frontostriatal resting-state functional connectivity in adulthood. Addict Biol 23:810-823
Fiorenza, Amanda M; Shnitko, Tatiana A; Sullivan, Kaitlin M et al. (2018) Ethanol Exposure History and Alcoholic Reward Differentially Alter Dopamine Release in the Nucleus Accumbens to a Reward-Predictive Cue. Alcohol Clin Exp Res 42:1051-1061
Hwa, Lara S; Neira, Sofia; Pina, Melanie M et al. (2018) Predator odor increases avoidance and glutamatergic synaptic transmission in the prelimbic cortex via corticotropin-releasing factor receptor 1 signaling. Neuropsychopharmacology :
Faccidomo, Sara; Swaim, Katarina S; Saunders, Briana L et al. (2018) Mining the nucleus accumbens proteome for novel targets of alcohol self-administration in male C57BL/6J mice. Psychopharmacology (Berl) 235:1681-1696
Bohnsack, John Peyton; Hughes, Benjamin A; O'Buckley, Todd K et al. (2018) Histone deacetylases mediate GABAA receptor expression, physiology, and behavioral maladaptations in rat models of alcohol dependence. Neuropsychopharmacology 43:1518-1529
Coleman Jr, Leon G; Zou, Jian; Qin, Liya et al. (2018) HMGB1/IL-1? complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun 72:61-77

Showing the most recent 10 out of 227 publications