Treatment of human cancers with chemotherapy or radiation with curative intent has led to the successful eradication of malignancies in millions of patients, yet the apoptotic cell death induced in healthy tissues drastically limits the use of thee crucial therapies. This is especially true in pediatric patients that, for example, commonly experience cardiotoxicity from doxorubicin treatment or neuronal apoptosis after brain irradiation. Adults exhibit dramatically less toxicity than children from these same treatments but the basis for this difference in sensitivity is unknown. Using BH3 profiling, an innovative tool to measure how close cells are to the threshold of apoptosis, we recently observed novel and striking differences in the how apoptosis is regulated in vital tissues that challenge the existing dogma in the field. These observations also create opportunities to improve existing therapies and develop novel classes of anti-cancer drugs. Within this proposal, we plan to first develop a comprehensive understanding of how differential regulation of apoptosis affects cell fate in response to damage or stress in vivo (Aim 1). Using gene expression analysis and mouse models, we will then identify the molecular mechanisms that control these pathways (Aim 2). Finally, we will utilize our newfound knowledge to identify and develop agents that will reduce toxicity from current treatments or represent novel classes of anti-cancer therapies (Aim 3). By understanding and modulating apoptosis programs in healthy and cancerous cells we will improve patient outcomes.

Public Health Relevance

The regulation of cell death pathways in healthy cells is difficult to study and represents an alarming gap in our knowledge considering the importance of maintaining survival in the cells that make up vital tissues. Utilizing a novel assay that allows u to meaningfully measure how ready cells are to undergo cell death (apoptosis), we have begun to observe novel and unexpected ways that cells maintain their survival that, within this proposal, will be characterized and exploited for patient benefit.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Transition Award (R00)
Project #
5R00CA188679-05
Application #
9620608
Study Section
Special Emphasis Panel (NSS)
Program Officer
Salnikow, Konstantin
Project Start
2014-09-01
Project End
2020-01-31
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Harvard University
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02115
McBrayer, Samuel K; Mayers, Jared R; DiNatale, Gabriel J et al. (2018) Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell 175:101-116.e25
Nangia, Varuna; Siddiqui, Faria M; Caenepeel, Sean et al. (2018) Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in KRAS-Mutant Non-Small Cell Lung Cancer. Cancer Discov 8:1598-1613
Gutierrez-Martinez, Paula; Hogdal, Leah; Nagai, Manavi et al. (2018) Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nat Cell Biol 20:413-421
Sarosiek, Kristopher A; Fraser, Cameron; Muthalagu, Nathiya et al. (2017) Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics. Cancer Cell 31:142-156