Members of the septin family of proteins are found in nearly every eukaryote, typically as hetero-oligomeric complexes, the proper organization of which is required for their function. Although the mechanistic details of their roles remain largely unknown, septins participate in a variety of cellular processes, generally involving plasma membrane remodeling. Mutation or misregulation that upsets the stoichiometry of septin heterooligomers is a common feature of septin-associated human diseases, which include cancer and hereditary neuropathies. In budding yeast, where septins were first identified, hetero-octamers - whose subunit composition is strikingly similar to those within human septin complexes - polymerize into filaments arrayed at sites of cell division and morphogenesis. Septin-containing cellular structures in dividing and differentiating cells are dynamic, undergoing abrupt changes in organization in a temporally and spatially regulated manner. It is not known how assemblies with the proper arrangement of septin subunits are built in the cell, or how they are reorganized during cycles of proliferation and development. The yeast septins represent an elegant and powerful system with which to identify cellular mechanisms regulating the organization of these multi-subunit macromolecular assemblies. Experiments supported by this award will examine how individual septin proteins are incorporated into distinct assemblies tailored to cellular demands, and how covalent modifications and septin-associated factors influence higher-order septin assembly. These studies exploit recently-developed tools for labeling of yeast proteins. Certain of these allow individual septins to be marked with a variety of functional tags and tracked through cell division and differentiation. Others allow visualization in situ with nanometer-scale resolution, and will be used to precisely detemiine the organization of septins within higher-order assemblies in vivo, and validated by a parallel method using ultra-high-resolution light microscopy. An genetic approach will be used to identify cellular factors controlling septin dynamics in vivo, with particular focus on Hsp104, a promising candidate for a novel treatment for diseases caused by septin misassembly.

Public Health Relevance

Although their molecular functions are not understood, it appears that the proper organization of different septin proteins into multisubunit assemblies is critical. Indeed, a number of diseases (ranging from neuronal disorders to cancer) involve mutations in or misregulation of septin genes in ways that upset the balance of septin assembly. This work will identify the ways that yeast cells build and maintain their septin complexes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Transition Award (R00)
Project #
4R00GM086603-03
Application #
8323635
Study Section
Special Emphasis Panel (NSS)
Program Officer
Gindhart, Joseph G
Project Start
2008-12-01
Project End
2014-08-31
Budget Start
2011-09-30
Budget End
2012-08-31
Support Year
3
Fiscal Year
2011
Total Cost
$248,999
Indirect Cost
Name
University of Colorado Denver
Department
Biology
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Weems, Andrew; McMurray, Michael (2017) The step-wise pathway of septin hetero-octamer assembly in budding yeast. Elife 6:
Heasley, Lydia R; McMurray, Michael A (2016) Roles of septins in prospore membrane morphogenesis and spore wall assembly in Saccharomyces cerevisiae. Mol Biol Cell 27:442-50
Garcia 3rd, Galo; Finnigan, Gregory C; Heasley, Lydia R et al. (2016) Assembly, molecular organization, and membrane-binding properties of development-specific septins. J Cell Biol 212:515-29
Johnson, Courtney R; Weems, Andrew D; Brewer, Jennifer M et al. (2015) Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast. Mol Biol Cell 26:1323-44
Heasley, Lydia R; Garcia 3rd, Galo; McMurray, Michael A (2014) Off-target effects of the septin drug forchlorfenuron on nonplant eukaryotes. Eukaryot Cell 13:1411-20
McMurray, Michael (2014) Lean forward: Genetic analysis of temperature-sensitive mutants unfolds the secrets of oligomeric protein complex assembly. Bioessays 36:836-46
Weems, Andrew D; Johnson, Courtney R; Argueso, Juan Lucas et al. (2014) Higher-order septin assembly is driven by GTP-promoted conformational changes: evidence from unbiased mutational analysis in Saccharomyces cerevisiae. Genetics 196:711-27
de Val, Natalia; McMurray, Michael A; Lam, Lisa H et al. (2013) Native cysteine residues are dispensable for the structure and function of all five yeast mitotic septins. Proteins 81:1964-79
Bertin, Aurelie; McMurray, Michael A; Pierson, Jason et al. (2012) Three-dimensional ultrastructure of the septin filament network in Saccharomyces cerevisiae. Mol Biol Cell 23:423-32
McMurray, Michael A; Bertin, Aurelie; Garcia 3rd, Galo et al. (2011) Septin filament formation is essential in budding yeast. Dev Cell 20:540-9

Showing the most recent 10 out of 14 publications