Ventricular tachyarrhythmias are a principal cause of sudden cardiac death (SCD). While altered mechanical loading leading to hypertrophy and decompensated heart failure is one of the most powerful risk factors for fatal ventricular arrhythmias, the mechanisms that link mechanical to electrical dysfunction in the heart remain poorly understood. Consequently, SCD remains a major unresolved public health problem. The applicant?s mentor recently reported that ventricular electrical remodeling (VER), a persistent change in the electrophysiological properties of ventricular myocardium in response a change in activation sequence, is triggered by local mechanical stretch via a mechano-electrical feedback mechanism. Preliminary data from his laboratory revealed significant expression changes in the Gq/11-protein coupled mechanoreceptor pathway in high-strain myocardium from paced canine hearts. Considering the prominent roles of this pathway in cardiac mechanotransduction and pressure- overload hypertrophy, it is an ideal candidate to explain VER. The applicant hypothesizes that myocardial stretch causes VER and arrhythmias via enhanced Gq/11 activation. In his current position at Case Western Reserve University, he engineered a zebrafish whole-heart stretch system that combines high-precision stretch and high-resolution electrophysiology with high-throughput gene manipulation in an intact vertebrate heart. Ventricles from wild-type and genetically modified zebrafish embryo hearts are stretched during field-pacing for several hours via attached 10-micrometer-diameter thin carbon fibers to induce persistent VER. Following stretch, VER is determined using high-resolution fluorescence imaging. The applicant?s preliminary data show that his zebrafish model reproduces the key electrophysiological phenotypes of his mentor?s canine model of VER. The applicant will use his zebrafish VER model to determine (1) the key biomechanical and bioelectrical conditions that induce VER, (2) how stretch-induced VER enhances the susceptibility of the heart to arrhythmias and (3) the molecular signaling mechanisms that cause stretch-induced VER. These studies will help identify new therapeutic targets for preventing and treating VER and associated arrhythmias in patients with heart disease. Support for this project via a K99/R00 award would play a pivotal and requisite role in the candidate?s career development. His immediate goals are: (1) to solidify his research experience through additional intensive mentorship, technical training and broad intellectual development that will result directly from this proposal. The applicant has considerable experience in biophysics and experimental model development, but requires additional training in molecular and integrative biology to develop an independent academic career in cardiovascular biology. (2) to successfully obtain R01 funding by the end of the 5-year award period. A highly structured career development plan is an intrinsic component of this proposal and is designed to greatly enhance the accomplishment of the candidate?s long-term career goal: to establish a vibrant, independently funded, interdisciplinary research program that combines biomedical engineering, high- throughput genetics and high-resolution electrophysiology to study the molecular mechanisms of cardiac arrhythmias.

Public Health Relevance

Ventricular cardiac arrhythmias are known to cause sudden death in patients with heart disease. The applicant has established a novel zebrafish model of stretch-induced ventricular electrical remodeling (VER) that he will use to dissect the molecular pathways that link myocardial stretch and arrhythmias. Results from this study will lead to new strategies to treat VER and arrhythmias in patients with conduction system dysfunction or ventricular pacing.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Transition Award (R00)
Project #
5R00HL112724-04
Application #
9093822
Study Section
Special Emphasis Panel (NSS)
Program Officer
Balijepalli, Ravi C
Project Start
2015-07-01
Project End
2019-06-30
Budget Start
2017-09-01
Budget End
2018-06-30
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Colombo, Sophie; de Sena-Tomás, Carmen; George, Vanessa et al. (2018) Nkx genes establish second heart field cardiomyocyte progenitors at the arterial pole and pattern the venous pole through Isl1 repression. Development 145:
Nassal, Michelle M J; Werdich, Andreas A; Wan, Xiaoping et al. (2016) Phosphorylation at Connexin43 Serine-368 Is Necessary for Myocardial Conduction During Metabolic Stress. J Cardiovasc Electrophysiol 27:110-9
Mosimann, Christian; Panáková, Daniela; Werdich, Andreas A et al. (2015) Chamber identity programs drive early functional partitioning of the heart. Nat Commun 6:8146
Gu, Shi; Wang, Yves T; Ma, Pei et al. (2015) Mapping conduction velocity of early embryonic hearts with a robust fitting algorithm. Biomed Opt Express 6:2138-57