This proposal will evaluate critical-interactions of cytokines and nutritional/ metabolic abnormalities of the hepatic transmethylation/transsulfuration pathways in the development of ALD using novel human, animal, and in vitro models, with the ultimate goal of developing specific therapy for ALD. Abnormal metabolism of tumor necrosis factor-alpha (TNF) is well documented in both experimental models of ALD and human ALD, and TNF plays a critical role in the development of experimental ALD. Abnormal methionine metabolism also is well documented in ALD, with patients frequently having elevated plasma methionine concentrations which correlate with prognosis. MAT1 A, the enzyme responsible for the initial conversion of methionine to S- adenosylmethionine (SAMe) is decreased in ALD. Depressed SAMe levels are observed in most forms of experimental liver injury including ALD, and SAMe therapy is an effective hepatoprotective agent in experimental liver injury. Data from our group show that one potential beneficial effect of SAMe is its ability to inhibit endotoxin stimulated TNF production in monocytes/Kupffer cells. Moreover, MAT1A """"""""knockout"""""""" mice have recently been generated, and these SAMe deficient mice develop spontaneous steatohepatitis and are much more sensitive to a second insult. While SAMe levels are depleted in ALD, both S-adenosylhomocysteine (SAH) and homocysteine levels are elevated. The SAMe:SAH ratio and the cellular concentration of SAH critically control most methyltransferase reactions in the body, and we recently reported that increased SAH sensitized to TNF induced hepatotoxicity. It is our working hypothesis that increased TNF in conjunction with altered SAMe/SAH metabolism play an etiologic role in the development/progression of liver injury in ALD. The specific objectives of this proposal are to: 1. Document that SAH sensitizes to TNF hepatotoxicity in vitro and in vivo. 2. Evaluate the effects of alcohol/SAH on induction of mitochondrial dysfunction and hepatocyte death. 3. Determine mechanisms whereby SAMe and SAH modulate LPS-stimulated cytokine production. 4. Evaluate beneficial effects of SAMe therapy on critical metabolic functions in patients with alcoholic cirrhosis. These studies utilize state-of-the-art models/techniques in a translational approach to develop an enhanced understanding of mechanisms involved in ALD and potential new therapy for ALD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project (R01)
Project #
5R01AA015970-03
Application #
7252496
Study Section
Xenobiotic and Nutrient Disposition and Action Study Section (XNDA)
Program Officer
Velazquez, Jose M
Project Start
2005-09-30
Project End
2010-06-30
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
3
Fiscal Year
2007
Total Cost
$348,456
Indirect Cost
Name
University of Louisville
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Song, Ming; Chen, Theresa; Prough, Russell A et al. (2016) Chronic Alcohol Consumption Causes Liver Injury in High-Fructose-Fed Male Mice Through Enhanced Hepatic Inflammatory Response. Alcohol Clin Exp Res 40:518-28
Song, Ming; Schuschke, Dale A; Zhou, Zhanxiang et al. (2015) Kupffer cell depletion protects against the steatosis, but not the liver damage, induced by marginal-copper, high-fructose diet in male rats. Am J Physiol Gastrointest Liver Physiol 308:G934-45
Liu, Yanlong; Ma, Zhenhua; Zhao, Cuiqing et al. (2014) HIF-1? and HIF-2? are critically involved in hypoxia-induced lipid accumulation in hepatocytes through reducing PGC-1?-mediated fatty acid ?-oxidation. Toxicol Lett 226:117-23
Shi, Xue; Wei, Xiaoli; Koo, Imhoi et al. (2014) Metabolomic analysis of the effects of chronic arsenic exposure in a mouse model of diet-induced Fatty liver disease. J Proteome Res 13:547-554
Ghare, Smita S; Joshi-Barve, Swati; Moghe, Akshata et al. (2014) Coordinated histone H3 methylation and acetylation regulate physiologic and pathologic fas ligand gene expression in human CD4+ T cells. J Immunol 193:412-21
Watson, Walter H; Burke, Tom J; Doll, Mark A et al. (2014) S-adenosylhomocysteine inhibits NF-?B-mediated gene expression in hepatocytes and confers sensitivity to TNF cytotoxicity. Alcohol Clin Exp Res 38:889-96
Smart, Laura; Gobejishvili, Leila; Crittenden, Neil et al. (2013) Alcoholic Hepatitis: Steroids vs. Pentoxifylline. Curr Hepat Rep 12:59-65
Wang, Yuhua; Liu, Yanlong; Kirpich, Irina et al. (2013) Lactobacillus rhamnosus GG reduces hepatic TNF? production and inflammation in chronic alcohol-induced liver injury. J Nutr Biochem 24:1609-15
Wahlang, Banrida; Beier, Juliane I; Clair, Heather B et al. (2013) Toxicant-associated steatohepatitis. Toxicol Pathol 41:343-60
Kirpich, Irina; Zhang, Jingwen; Gobejishvili, Leila et al. (2013) Binge ethanol-induced HDAC3 down-regulates Cpt1? expression leading to hepatic steatosis and injury. Alcohol Clin Exp Res 37:1920-9

Showing the most recent 10 out of 46 publications