Toxicity from ethanol and related stressors is a major etiologic factor linked to birth defects, cancer, cirrhosis and other important diseases. Apoptosis is well established as a critical pathologic feature contributing to ethanol-induced tissue injury but effectors that couple exposure of this agent to cell death are not known. In order to understand how alcohol instigates and/or exacerbates human disease, it is necessary to identify the signaling mechanisms that elicit apoptogenic responses to this stimulus. Understanding fundamental pathways that support apoptogenic responses to alcohol in vivo is an organizing goal of this project. Our central hypothesis predicts that core effectors of alcohol toxicity are universally shared across the animal kingdom and likely define authentic targets for therapeutic intervention. To initiate comprehensive studies, we established robust models of ethanol-induced toxicity in human, zebrafish and Drosophila systems. Our strategy emphasizes a functional approach, from widely divergent systems, to identify conserved pathways required for alcohol-induced cell death.
Aims 1 and 2 leverage functional genomic screening platforms, together with robust models of alcohol-induced killing in relevant human and Drosophila cell lines, to expose commonly shared effectors of sensitivity to this stressor.
In Aim 3, we interrogate these universal effectors in whole animal models of alcohol-induced tissue damage. Together, our studies will identify critical determinants that support alcohol-related pathology and could establish proof of principle for mitigating disease through the control of apoptosis. In turn, these insights will expose new opportunities for improved management of disease caused by alcohol and related stressors in humans

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project (R01)
Project #
5R01AA017328-03
Application #
7677822
Study Section
Special Emphasis Panel (ZES1-LWJ-E (CG))
Program Officer
Jung, Kathy
Project Start
2007-09-30
Project End
2011-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
3
Fiscal Year
2009
Total Cost
$353,250
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Link, Nichole; Kurtz, Paula; O'Neal, Melissa et al. (2013) A p53 enhancer region regulates target genes through chromatin conformations in cis and in trans. Genes Dev 27:2433-8
Chen, P; Tu, X; Akdemir, F et al. (2012) Effectors of alcohol-induced cell killing in Drosophila. Cell Death Differ 19:1655-63
Lu, Wan-Jin; Chapo, Joseph; Roig, Ignasi et al. (2010) Meiotic recombination provokes functional activation of the p53 regulatory network. Science 328:1278-81
Chew, Su Kit; Chen, Po; Link, Nichole et al. (2009) Genome-wide silencing in Drosophila captures conserved apoptotic effectors. Nature 460:123-7