A number of neural processing streams converge in the prefrontal cortex (PFC), and balancing the confluence of information processed by this region is critical for regulating behavior. The maintenance and integration of information in this region is primarily achieved through alterations in neuromodulatory drive and is critically altered in individuals with an alcohol use disorder (AUD) or those vulnerable to this condition. Specifically, the modulatory neurotransmitter dopamine (DA) has been strongly implicated in the motivational aspects of reinforcement learning, reward choice behavior, and in processing of reward-related stimuli in both rats and humans. Considering this, identifying how neuromodulators, such as DA, mediate information transfer in the PFC and how they are altered as a consequence of alcohol drinking and in those at risk for excessive drinking represents a currently unmet and critical need. The rationale of this research plan is that imbalanced DA signaling in the PFC leads to alterations in neural processing, which plays a key role in the excessive motivational properties acquired by alcohol in AUD. The uptake and diffusion kinetics of DA in the PFC are unique compared with the rest of the brain, in that they are largely mediated by the enzyme catechol-O-methyl- transferase (COMT). Nine NIH-registered clinical trials are currently assessing if the COMT inhibitor, Tolcapone, is a viable treatment option for a number of neuropsychiatric disorders, including substance use and gambling disorders. However, a clear therapeutic mechanism of this drug has not been identified. Preliminary data from our group strongly indicates that Tolcapone suppresses alcohol-motivated behaviors in a rodent model of excessive drinking. These data inspired a multidisciplinary set of experiments to determine if the effects of Tolcapone are mediated via the PFC DA system and how this drug alters neural processing in this brain region.
Specific Aim 1 will determine if Tolcapone suppresses alcohol-motivated behaviors through PFC DA receptors.
Specific Aim 2 will quantify line and sex differences in COMT and determine if adaptive changes in COMT occur following motivated behavior.
Specific Aim 3 will characterize electrophysiological activity during anticipation and drinking to identify which measures are necessary for alcohol-motivated behaviors. Since Tolcapone administration will suppress alcohol-motivated behaviors it should therefore interfere with the neural processes necessary for them. In this way, these data will move beyond correlations between physiology and behavior and allow causal relationships to be established between changes in neural activity and alcohol-motivated behaviors.

Public Health Relevance

This project will follow up on a series of preliminary studies showing that blocking the activity of the dopamine-metabolizing enzyme, COMT, suppresses excessive alcohol drinking. The proposed experiments employ a multidisciplinary approach with the goal of discovering how inhibiting COMT suppresses ethanol-motivated behaviors. These experiments will trace protein-level changes in COMT to alterations in neural function, and ultimately behavior. These data will potentially lead to the development of novel pharmacotherapies as well as metrics to assess potential treatment strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project (R01)
Project #
5R01AA023786-02
Application #
9054741
Study Section
Neurotoxicology and Alcohol Study Section (NAL)
Program Officer
Cui, Changhai
Project Start
2015-04-15
Project End
2020-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
2
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Indiana University-Purdue University at Indianapolis
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Janetsian-Fritz, Sarine S; Timme, Nicholas M; Timm, Maureen M et al. (2018) Maternal deprivation induces alterations in cognitive and cortical function in adulthood. Transl Psychiatry 8:71
McCane, Aqilah M; DeLory, Michael J; Timm, Maureen M et al. (2018) Differential COMT expression and behavioral effects of COMT inhibition in male and female Wistar and alcohol preferring rats. Alcohol 67:15-22
Linsenbardt, David N; Smoker, Michael P; Janetsian-Fritz, Sarine S et al. (2017) Impulsivity in rodents with a genetic predisposition for excessive alcohol consumption is associated with a lack of a prospective strategy. Cogn Affect Behav Neurosci 17:235-251
Myroshnychenko, Maxym; Seamans, Jeremy K; Phillips, Anthony G et al. (2017) Temporal Dynamics of Hippocampal and Medial Prefrontal Cortex Interactions During the Delay Period of a Working Memory-Guided Foraging Task. Cereb Cortex 27:5331-5342
Barker, Jacqueline M; Glen, W Bailey; Linsenbardt, David N et al. (2017) Habitual Behavior Is Mediated by a Shift in Response-Outcome Encoding by Infralimbic Cortex. eNeuro 4:
Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis et al. (2016) Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting. J Neurophysiol 116:1900-1923
Nigam, Sunny; Shimono, Masanori; Ito, Shinya et al. (2016) Rich-Club Organization in Effective Connectivity among Cortical Neurons. J Neurosci 36:670-84
Linsenbardt, David N; Lapish, Christopher C (2015) Neural Firing in the Prefrontal Cortex During Alcohol Intake in Alcohol-Preferring ""P"" Versus Wistar Rats. Alcohol Clin Exp Res 39:1642-53
Lapish, Christopher C; Balaguer-Ballester, Emili; Seamans, Jeremy K et al. (2015) Amphetamine Exerts Dose-Dependent Changes in Prefrontal Cortex Attractor Dynamics during Working Memory. J Neurosci 35:10172-87