Early changes in AD brain include loss of synapses. AB, considered to have a central role in the pathogenesis of AD, bind to dendritic spines and cause synaptic dysfunction. However, the mechanisms responsible for AB-induced synaptic dysfunction and spine loss are not firmly established. Notably, synaptic terminals have abundant mitochondria which play an indispensable role at these sites. Along this line, mitochondrial dysfunction is an early prominent feature of AD neurons. Mitochondria are dynamic organelles that undergo continual fission and fusion events which are regulated by a machinery involving large dynamin-related GTPase that exert opposing effects, e.g., dynamin-like protein 1 (DLP1) and Fis1 for fission, and mitofusins (Mfn1 and Mfn2C) and OPA1 for fusion. These mitochondria fission and fusion proteins control not only mitochondrial number and morphology but also mitochondrial distribution and function. Indeed, defects in the mitochondrial fission/fusion balance and thus, the morphology and distribution have the potential to cause localized energy and calcium imbalance, which is especially damaging to polarized cells such as neurons, resulting in cellular dysfunction and death. Our preliminary studies suggest that the normally strict regulation of mitochondria morphology and distribution is impaired in AD neurons and fibroblasts which may be caused by differential expression of mitochondrial fission/fusion proteins induced by AB. Our central hypothesis is that AB induces mitochondrial dysfunction and synaptic abnormalities via its toxic effect on mitochondrial fission/fusion.
Four aims will be pursued:
Aim1) ADDLs induce mitochondrial dysfunction and synaptic abnormalities via its toxic effect on mitochondrial fission/fusion in vitro;
Aim2) To Explore the Mechanisms of ADDL-induced DLP1 Reduction;
Aim3) mutant PS1 causes mitochondrial abnormalities and neuronal dysfunction at least in part through its interaction with DLP1 and impaired balance in mitochondrial fission/fusion;
Aim 4) DLP1 reduction underlies mitochondrial abnormalities and synaptic loss in vivo.

Public Health Relevance

AB-caused synaptic dysfunction and spine loss is an early change and the most robust correlate of AD- associated cognitive deficits, however the underlying mechanism is not firmly established. It is known that mitochondria play an indispensable role in synaptic terminals and the balance of mitochondrial fission/fusion is critical for mitochondrial distribution and function. Our preliminary studies suggest the potential involvement of an impaired balance of mitochondrial fission/fusion in the pathogenesis of AD, in this application, we propose to investigate whether AB cause synaptic dysfunction and mitochondrial abnormalities via its toxic effect on the balance of mitochondrial fission and fusion.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG031852-03
Application #
7800269
Study Section
Cell Death in Neurodegeneration Study Section (CDIN)
Program Officer
Refolo, Lorenzo
Project Start
2008-03-01
Project End
2013-02-28
Budget Start
2010-03-15
Budget End
2011-02-28
Support Year
3
Fiscal Year
2010
Total Cost
$318,632
Indirect Cost
Name
Case Western Reserve University
Department
Pathology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Wang, Xinglong; Wang, Wenzhang; Li, Li et al. (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta 1842:1240-7
Bonda, David J; Stone, Jeremy G; Torres, Sandy L et al. (2014) Dysregulation of leptin signaling in Alzheimer disease: evidence for neuronal leptin resistance. J Neurochem 128:162-72
Zhu, Xiongwei; Perry, George; Smith, Mark A et al. (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Alzheimers Dis 33 Suppl 1:S253-62
Yan, Michael H; Wang, Xinglong; Zhu, Xiongwei (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90-101
Bonda, David J; Liu, Gang; Men, Ping et al. (2012) Nanoparticle delivery of transition-metal chelators to the brain: Oxidative stress will never see it coming! CNS Neurol Disord Drug Targets 11:81-5
Sheng, Baiyang; Wang, Xinglong; Su, Bo et al. (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. J Neurochem 120:419-29
Rodrigues, Roberto; Smith, Mark A; Wang, Xinglong et al. (2012) Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. Future Neurol 7:287-305
Liu, Kai; Guo, Tai L; Chojnacki, Jeremy et al. (2012) Bivalent ligand containing curcumin and cholesterol as fluorescence probe for A* plaques in Alzheimer's disease. ACS Chem Neurosci 3:141-146
Bonda, David J; Lee, Hyoung-Gon; Camins, Antoni et al. (2011) The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol 10:275-9
Bonda, David J; Smith, Mark A; Perry, George et al. (2011) The mitochondrial dynamics of Alzheimer's disease and Parkinson's disease offer important opportunities for therapeutic intervention. Curr Pharm Des 17:3374-80

Showing the most recent 10 out of 30 publications