Rapamycin is the only compound that has been unambiguously shown to extend the maximum lifespan of mice. Unfortunately, side effects including immunosuppression and the elevation of cardiovascular risk factors are likely to limit the utility of the drug in humans. Therefore, there is a great need and opportunity to understand how rapamycin works - both for the development of safe and effective therapeutics, and to gain insight into the basic mechanisms of aging itself. The canonical target of rapamycin is mTORC1, a nutrient sensing kinase whose homolog has been implicated in the extension of lifespan by caloric restriction (CR) in lower organisms. In mice, ablation of the mTORC1 target S6 kinase 1 (S6K1) mimics salient features of CR, including increases in insulin sensitivity, mitochondrial biogenesis, and lifespan. Therefore, it has been postulated that rapamycin mimics CR by inhibiting the mTORC1/S6K1 axis in mammals. In sharp contrast to CR, however, rapamycin actually causes insulin resistance and, at least in cells, inhibits oth the production and activity of mitochondria. These are surprising and potentially very important observations, given that both insulin sensitization and increased mitochondrial biogenesis have been suggested to contribute to CR-induced longevity. We recently showed that rapamycin-induced insulin resistance is the result of inhibiting a second target, mTORC2, and moreover, that specific inhibition of mTORC1 extends lifespan without detrimental effects on insulin signaling. Next, we plan to test whether the inhibition of mitochondrial biogenesi and activity that is observed in cells also occurs in vivo. If so, rapamycin will allow us to proide the first clear demonstration that mitochondrial biogenesis can be uncoupled from longevity. In a second line of experiments, we will treat S6K1 knockout mice with rapamycin to test the hypothesis that S6K1-independent mechanisms contribute to its effects on longevity. There are a number of reasons for believing that this will be the case. S6K1 ablation produces very different changes in physiology and does not extend life in males, whereas rapamycin does. Moreover, the mTORC2 homolog regulates longevity in worms, and our demonstration that rapamycin disrupts mTORC2 in mice therefore provides a candidate mechanism for S6K1-independent effects. Finally, we will explore the tissue-specific consequences of mTORC2 disruption. Loss of mTORC2 in the liver appears to mediate detrimental effects of rapamycin on insulin sensitivity, and ameliorating these effects could lead to complementary approaches to improve the safety and efficacy of the drug. On the other hand, loss of another insulin signaling molecule, IRS2, in the brain has previously been shown to extend life, and loss of neuronal mTORC2 might therefore contribute to the beneficial effect of rapamycin on lifespan. Elucidating the mechanisms by which rapamycin is able to prevent or slow progression of age-related diseases and extend the maximum survival time in mice will offer important insights, and likely new therapeutic targets, in the effort to promote healthy human aging.

Public Health Relevance

Rapamycin is the only compound that has been unambiguously shown to extend the maximum lifespan of a mammalian species. The underlying mechanisms remain unknown, and side effects including immunosuppression and the elevation of cardiovascular risk factors are likely to limit the utility of the drug in humans. Elucidating the mechanisms by which rapamycin is able to slow the progression of age-related deterioration will provide crucial insight into the basic mechanisms of aging, and guide the development of new therapies to combat age-related diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG043483-03
Application #
8852520
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Velazquez, Jose M
Project Start
2013-06-01
Project End
2018-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
3
Fiscal Year
2015
Total Cost
$405,691
Indirect Cost
$152,134
Name
University of Pennsylvania
Department
Physiology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Davila, Antonio; Liu, Ling; Chellappa, Karthikeyani et al. (2018) Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. Elife 7:
Yoshino, Jun; Baur, Joseph A; Imai, Shin-Ichiro (2018) NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab 27:513-528
Sims, Carrie A; Guan, Yuxia; Mukherjee, Sarmistha et al. (2018) Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight 3:
Liu, Ling; Su, Xiaoyang; Quinn 3rd, William J et al. (2018) Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab 27:1067-1080.e5
Krishnaiah, Saikumari Y; Wu, Gang; Altman, Brian J et al. (2017) Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism. Cell Metab 25:961-974.e4
Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea et al. (2017) Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology 65:616-630
Frederick, David W; Loro, Emanuele; Liu, Ling et al. (2016) Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metab 24:269-82
Wada, Shogo; Neinast, Michael; Jang, Cholsoon et al. (2016) The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev 30:2551-2564
Tran, Cassie M; Mukherjee, Sarmistha; Ye, Lan et al. (2016) Rapamycin Blocks Induction of the Thermogenic Program in White Adipose Tissue. Diabetes 65:927-41
Mitchell, Sarah J; Madrigal-Matute, Julio; Scheibye-Knudsen, Morten et al. (2016) Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metab 23:1093-1112

Showing the most recent 10 out of 16 publications