The long-term objective of this project is to determine the basic mechanisms by which oxidative stress conditions specifically and directly contribute to the pathogenesis of osteoarthritis (OA) with a particular focus on age-related OA. Mitochondrial dysfunction, a hallmark of aging found in OA, contributes to age-related conditions through promoting cellular oxidative stress. Rather than simply causing random oxidative damage to cells and tissues, the modern definition of oxidative stress emphasizes that an imbalance in favor of oxidants leads to disruption of normal redox signaling. The present project has provided evidence in human cells and tissues and in aging mice that oxidative stress originating in the mitochondria disrupts chondrocyte signaling to contribute to OA through excessive protein thiol oxidation. This resulted in inhibition of pro-survival and pro-anabolic Akt and Smad signaling and promotion of pro-death and pro-catabolic p38 signaling. Consistent with a mitochondrial source of H2O2, transgenic mice that overexpress human catalase targeted to the mitochondria developed less age-related OA. We also found that pathologic levels of H2O2 inhibit JNK2 signaling and JNK2 knockout mice develop more severe age-related OA. Peroxiredoxins (Prxs) are major regulators of redox signaling due to their abundance in the cell and high reaction rates with H2O2. We found evidence linking inactivation of Prxs through hyperoxidation, including the mitochondrial Prx3, to disrupted chondrocyte signaling including Akt and JNK2 inhibition with p38 activation resulting in cell death. These findings support our overall hypothesis that in OA, pathological levels of ROS, including mitochondrial H2O2, inhibit anabolic and promote catabolic and cell death signaling through excessive protein thiol oxidation. To test this hypothesis our aims are: 1) Determine the mechanism by which mitochondrial peroxiredoxin-3 (Prx3) hyperoxidation disrupts chondrocyte signaling under oxidative stress conditions. We will test the hypothesis that Prx3 hyperoxidation results in oxidation of protein thiols in specific signaling proteins to favor catabolic and cell death pathways over anabolic and cell survival pathways. 2) Determine the effects of transgenic overexpression of Prx3 on the development of OA in mice.
This aim will test the hypothesis that overexpression of Prx3 will reduce age-related OA. These studies will shift the field from a focus on random oxidative damage as the mechanism by which aging and oxidative stress promote OA to an understanding of the role of disturbed redox signaling. This mechanism is important to understand because therapeutic targeting of specific proteins that regulate redox signaling is feasible, is an active area of investigation, and promises to be much more effective than targeting random oxidative damage using non-specific anti-oxidants.

Public Health Relevance

Osteoarthritis is the most common cause of chronic disability in older adults but treatments to slow the progression of the disease are lacking. The results from this project will provide new information about basic mechanisms relevant to joint tissue breakdown in osteoarthritis with a focus on the role of reactive oxygen species. This information is needed in order to discover new targets for slowing or stopping the progression of the disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
2R01AG044034-06
Application #
9310846
Study Section
Special Emphasis Panel (ZRG1-MOSS-V (02)M)
Program Officer
Williams, John
Project Start
2012-09-30
Project End
2022-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
6
Fiscal Year
2017
Total Cost
$413,989
Indirect Cost
$134,784
Name
University of North Carolina Chapel Hill
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Bolduc, Jesalyn A; Collins, John A; Loeser, Richard F (2018) Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med :
Diekman, Brian O; Collins, John A; Loeser, Richard F (2018) Does Joint Injury Make Young Joints Old? J Am Acad Orthop Surg 26:e455-e456
Diekman, Brian O; Sessions, Garrett A; Collins, John A et al. (2018) Expression of p16INK4a is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell :e12771
Collins, John A; Diekman, Brian O; Loeser, Richard F (2018) Targeting aging for disease modification in osteoarthritis. Curr Opin Rheumatol 30:101-107
Nelson, Kimberly J; Bolduc, Jesalyn A; Wu, Hanzhi et al. (2018) H2O2 oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes. J Biol Chem 293:16376-16389
Loeser, Richard F (2017) The Role of Aging in the Development of Osteoarthritis. Trans Am Clin Climatol Assoc 128:44-54
Nazli, S A; Loeser, R F; Chubinskaya, S et al. (2017) High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes. Osteoarthritis Cartilage 25:1516-1521
Collins, John A; Wood, Scott T; Nelson, Kimberly J et al. (2016) Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes. J Biol Chem 291:6641-54
Loeser, Richard F; Collins, John A; Diekman, Brian O (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412-20
Wood, Scott T; Long, David L; Reisz, Julie A et al. (2016) Cysteine-Mediated Redox Regulation of Cell Signaling in Chondrocytes Stimulated With Fibronectin Fragments. Arthritis Rheumatol 68:117-26

Showing the most recent 10 out of 18 publications