Elder mistreatment (EM) is commonly defined as an intentional act, or failure to act, by a caregiver or another person in a relationship involving an expectation of trust, that causes harm or creates a risk of harm to an older adult. EM includes financial abuse/exploitation, neglect, emotional/psychological abuse, physical abuse, and sexual abuse. Exposure is often chronic, and commonly involves multiple forms of abuse. This is concerning as there is an estimated 11% annual prevalence among cognitively intact adults, and higher amongst those with dementia. Further, EM is linked with increased risk of physical injury, hospitalization, emergency room visits, psychological distress, morbidity, and early mortality. Nevertheless, EM is difficult to detect and often goes unrecognized. Effective and efficient EM screening tools are urgently needed to improve early detection efforts. We will gather the data required to determine the sensitivity and specificity of the DETECT tool, a screening tool designed specifically to help medics identify potential EM occurring in the community. Our proposed methodology includes in-person follow-up assessments with a random sample of older adults screened using DETECT (N = 2,500 total participants). We will conduct a brief capacity assessment and follow-up assessment 1 month after the original DETECT screening. This assessment will include validated measures of emotional, physical, and sexual abuse, neglect, financial exploitation, and poly-victimization. It will also include validated measures of other potentially modifiable risk and protective factors.23 The specific aims of the proposed project are:
AIM 1 : Validation of an innovative EM screening tool (DETECT). We will match DETECT screening results with an expert LEAD panel determination ?gold standard? to calculate diagnostic performance for each screening item, and all screening items collectively. This comprehensive approach to validating DETECT will provide the needed empirical foundation for its broader implementation.
AIM 2 : Optimizing the DETECT Tool Via Systematic Item Reduction. We will use confirmatory factor analysis to determine the relative predictive value of each DETECT item. Results will inform systematic item reduction efforts, streamlining the tool for optimally efficient administration.
AIM 3 : Identify risk and protective factors for EM. Follow-up in-person interviews will provide rich contextual data that highlight modifiable personal and contextual factors (e.g., previous EM and/or polyvictimization, social support, unmet health and daily living needs, financial problems, and mental factors). The large sample size of the proposed study (N=2,500) will permit an unprecedented opportunity to examine predictors of EM.

Public Health Relevance

This study will result in the creation and validation of a brief screening tool for elder mistreatment that is based on medic's systematic observations of older adults and their physical and social environments, and can easily be integrated into their existing procedures and medical charting software. There are more than 800,000 EMTs and paramedics providing services in every county nationwide, a valid and reliable screening tool that is easy for EMS providers to use has the potential dramatically improve EM detection across the United States.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG059993-02
Application #
9783718
Study Section
Special Emphasis Panel (ZAG1)
Program Officer
Gerald, Melissa S
Project Start
2018-09-15
Project End
2023-05-31
Budget Start
2019-06-01
Budget End
2020-05-31
Support Year
2
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Texas Health Science Center Houston
Department
Type
University-Wide
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77030