Receptor-mediated cell adhesion is fundamental to a wide variety of biological processes. Interactions between Fc gamma receptors (Fc- gamma-Rs) and immunoglobulin G (IgG) are key mechanisms through which antibody effector functions are mediated. These molecules are clearly defined and have been well characterized biochemically. As such, they represent an excellent biological system for biophysical studies of receptor-ligand interactions notwithstanding that the results of these studies will be directly relevant to the understanding of immune functions. The proposed research thus has a dual objective: to elucidate the structure-function relationship of two low-affinity Fc-gamma-Rs (CD16 and CD32) and to use these as a model system to address fundamental issues in the biophysics of cell adhesion. The former include the effects of the membrane anchor on the ligand binding kinetics of CD16b and CD32a, the dissection of the critical amino acid that gives rise to the affinity difference between CD16a and CD16b, and the cross- regulation between CD16b and CD32a. The latter include development of measurement methods, construction of mathematical models, and characterization of interfacial adhesive dynamics. The focus is kinetic and equilibrium constants of receptor-ligand interactions when both molecules are linked to apposing surfaces. These constants are essential determinants of cell adhesion, as they govern how likely, how rapidly and how strongly cells bind, as well as how long they remain bound in the presence and absence of external forces. Our central hypothesis is that the effective kinetic rates and affinities depend not only on the intrinsic binding reaction, but also on how the receptors and ligands are presented by the surfaces, how the two surfaces are brought into contact, and how the membranes are aligned to form an ordered contact area. This hypothesis will be tested by systematic studies organized in three specific aims: 1. Quantify the effects of structural variations in CD16 and CD32 on their ligand-binding kinetics; 2. Determine the kinetics of Fc-gamma- R-IgG interactions using the flow chamber; and 3. Measure the kinetics of Fc-gamma-R-IgG interactions by a new contact area FRAP (fluorescence recovery after photobleaching) method. The results of this project promise to improve our understanding of the biophysical basis of the Fc-gamma-R-IgG interaction-mediated cell adhesion at the molecular level. It may also provide guidance to the development of Fc-gamma-R- based drugs for treatment of inflammatory disorders and auto-immune diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI038282-09
Application #
6752423
Study Section
Surgery and Bioengineering Study Section (SB)
Program Officer
Rathbun, Gary
Project Start
1995-09-01
Project End
2006-05-31
Budget Start
2004-06-01
Budget End
2005-05-31
Support Year
9
Fiscal Year
2004
Total Cost
$408,259
Indirect Cost
Name
Georgia Institute of Technology
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
097394084
City
Atlanta
State
GA
Country
United States
Zip Code
30332
Seo, Young-Jin; Jothikumar, Prithiviraj; Suthar, Mehul S et al. (2016) Local Cellular and Cytokine Cues in the Spleen Regulate In Situ T Cell Receptor Affinity, Function, and Fate of CD8+ T Cells. Immunity 45:988-998
Chen, Yunfeng; Liu, Baoyu; Ju, Lining et al. (2015) Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell. J Vis Exp :e52975
Hong, Jinsung; Persaud, Stephen P; Horvath, Stephen et al. (2015) Force-Regulated In Situ TCR-Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells. J Immunol 195:3557-64
Liu, Baoyu; Chen, Wei; Natarajan, Kannan et al. (2015) The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex. Eur J Immunol 45:2099-110
Pryshchep, Sergey; Zarnitsyna, Veronika I; Hong, Jinsung et al. (2014) Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. J Immunol 193:68-76
Casas, Javier; Brzostek, Joanna; Zarnitsyna, Veronika I et al. (2014) Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat Commun 5:5624
Liu, Baoyu; Chen, Wei; Evavold, Brian D et al. (2014) Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157:357-368
Zhu, Cheng (2014) Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann Biomed Eng 42:388-404
Chen, Wei; Zhu, Cheng (2013) Mechanical regulation of T-cell functions. Immunol Rev 256:160-76
Rosenthal, Kristen M; Edwards, Lindsay J; Sabatino Jr, Joseph J et al. (2012) Low 2-dimensional CD4 T cell receptor affinity for myelin sets in motion delayed response kinetics. PLoS One 7:e32562

Showing the most recent 10 out of 19 publications