: T cell responses are controlled by intracellular signals emanating from ligation of cell surface receptors. The concept of two signals being required for T cell activation is well established. Signal two is generally regarded as that brought about by ligation of CD28 with B7-1 or B7-2. However, more recent studies have suggested that other cell surface receptors are involved in costimulating T cells. We have extensively studied a member of the TNFR family, namely OX40 (CD134), whose expression is induced on T cells 1-3 days after the initial activation event. We have demonstrated that OX40 costimulation prolongs clonal expansion of CD4 cells, enhances T cell differentiation and cytokine secretion, and suppresses T cell apoptosis. Thus, OX40 is responsible for the high frequency of effector T cells that develop in primary immune responses, and for the survival of a high frequency of memory T cells over time. In the present application, we seek to extend our functional data and define molecularly the mode of action of OX40. We will further elucidate how OX40 suppresses cell death through regulating the pro- and anti-apoptotic members of the Bcl-2 family, and how OX40 modulates survivin and p27kip, two molecules involved in regulating cell division that we have identified as targets of OX40. Expression studies will be complemented where appropriate with retroviral transduction of OX40 knockout T cells with Bcl-xL, Bcl-2, survivin, and dominant negative p27, in order to restore survival, division, and cytokine production of OX40- /o T cells. We will investigate control of OX40-induced responses by TRAF2 and 5, initially with expression studies of wt T cells responding to agonist anti-OX40 or OX40L-expressing APCs, and then with studies of T cells from TRAF2 dn Tg mice and TRAF5 knockout mice. We will then investigate signaling pathways controlled by PI3k/Akt and PKC0 leading to JNK and NF-v-,B activation, that are induced by OX40, and confirm these pathways with retroviral transduction of dominant negative constructs. In each case functional responses will be directly correlated with the particular intracellular pathway that is engaged by OX40 signals. These studies are tremendously important in defining the action of OX40 and will therefore help in defining which molecular pathways are necessary and sufficient for promoting division, survival, and cytokine production by primary T cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI049453-04
Application #
6983420
Study Section
Immunobiology Study Section (IMB)
Program Officer
Nabavi, Nasrin N
Project Start
2002-12-01
Project End
2007-11-30
Budget Start
2005-12-01
Budget End
2006-11-30
Support Year
4
Fiscal Year
2006
Total Cost
$369,214
Indirect Cost
Name
La Jolla Institute
Department
Type
DUNS #
603880287
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Duan, Wei; Croft, Michael (2014) Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells. Ann Am Thorac Soc 11 Suppl 5:S306-13
Croft, Michael (2014) The TNF family in T cell differentiation and function--unanswered questions and future directions. Semin Immunol 26:183-90
Nagashima, Hiroyuki; Okuyama, Yuko; Asao, Atsuko et al. (2014) The adaptor TRAF5 limits the differentiation of inflammatory CD4(+) T cells by antagonizing signaling via the receptor for IL-6. Nat Immunol 15:449-56
Boettler, Tobias; Choi, Youn Soo; Salek-Ardakani, Shahram et al. (2013) Exogenous OX40 stimulation during lymphocytic choriomeningitis virus infection impairs follicular Th cell differentiation and diverts CD4 T cells into the effector lineage by upregulating Blimp-1. J Immunol 191:5026-35
Croft, Michael; Benedict, Chris A; Ware, Carl F (2013) Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov 12:147-68
Boettler, Tobias; Moeckel, Friedrich; Cheng, Yang et al. (2012) OX40 facilitates control of a persistent virus infection. PLoS Pathog 8:e1002913
Croft, Michael; Duan, Wei; Choi, Heonsik et al. (2012) TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol 33:144-52
Doherty, Taylor A; Croft, Michael (2011) Therapeutic potential of targeting TNF/TNFR family members in asthma. Immunotherapy 3:919-21
Bresson, Damien; Fousteri, Georgia; Manenkova, Yulia et al. (2011) Antigen-specific prevention of type 1 diabetes in NOD mice is ameliorated by OX40 agonist treatment. J Autoimmun 37:342-51
So, Takanori; Soroosh, Pejman; Eun, So-Young et al. (2011) Antigen-independent signalosome of CARMA1, PKC?, and TNF receptor-associated factor 2 (TRAF2) determines NF-?B signaling in T cells. Proc Natl Acad Sci U S A 108:2903-8

Showing the most recent 10 out of 21 publications