Tuberculosis (TB) is a persistent lung infection that has plagued mankind for centuries and ranks as one of the most serious threats to world health today. The 2-3 million deaths attributed yearly to the disease, as well as the emergence of strains resistant to all of the available chemotherapeutic agents, urgently call for the development of new therapies to treat TB. For years, the identification of new drug targets has been hampered by the intractability of the bacillus to genetic analysis. Now with the advent of powerful genetic tools, combined with well-established mouse infection models, we have isolated novel M. tuberculosis mutants with lesions in individual genes that are required for normal growth during acute infection. Our results have led us to the hypothesis that M. tuberculosis influences host-pathogen contacts by utilizing two virulence secretion systems: the MmpL family of transporters, which secretes polyketide lipids to the bacterial cell surface, and the Snm secretion system, which secretes proteins into host cells. Both of these secretion pathways are central to M. tuberculosis virulence. The studies proposed here will seek to determine the protein complexes that target and translocate virulence factors across the cell membrane in M. tuberculosis. In the case of MmpL proteins, we will test the hypothesis that interactions between synthase and transporter provide efficiency and specificity to lipid transport. Likewise, we will use our knowledge of some of the proteins that make up the Snm secretion system to identify new components using both genetics and biochemistry. The results from these studies will direct our long-term plans to understand the mechanism by which M. tuberculosis virulence factors are secreted from the bacterium and into the host. Ultimately, by understanding tuberculosis pathogenesis at the molecular level, we hope to aid in the discovery of new therapies to combat and eradicate this persistent infection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI051667-10
Application #
7864237
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
Jacobs, Gail G
Project Start
2001-09-15
Project End
2012-05-31
Budget Start
2010-06-01
Budget End
2012-05-31
Support Year
10
Fiscal Year
2010
Total Cost
$488,968
Indirect Cost
Name
University of California San Francisco
Department
Biochemistry
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Ohol, Yamini M; Goetz, David H; Chan, Kaman et al. (2010) Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7:210-20
Champion, Patricia A DiGiuseppe; Champion, Matthew M; Manzanillo, Paolo et al. (2009) ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol Microbiol 73:950-62
Ramage, Holly R; Connolly, Lynn E; Cox, Jeffery S (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5:e1000767
Shiloh, Michael U; Manzanillo, Paolo; Cox, Jeffery S (2008) Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3:323-30
Raghavan, Sridharan; Manzanillo, Paolo; Chan, Kaman et al. (2008) Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454:717-21
Grundner, Christoph; Cox, Jeffery S; Alber, Tom (2008) Protein tyrosine phosphatase PtpA is not required for Mycobacterium tuberculosis growth in mice. FEMS Microbiol Lett 287:181-4