M. tuberculosis (Mtb) is one of the leading causes of death worldwide and claims millions of lives annually. Approximately ~1.7 billion people worldwide are asymptomatically infected with the tubercle bacillus and constitute a major impediment to worldwide public health control measures. Previous work had shown that a point mutation (Arg515->His) in the 4.2 domain of RpoV, the principal sigma factor in Mycobacterium bovis, is attenuating. Mice infected with MtbwhiB3 showed significantly longer survival times than mice infected with the wild type Mtb. In addition, the lungs of MtbwhiB3-infected mice appeared much less adversely affected. Recent studies have shown that WhiB3 is a 4Fe-4S cluster protein and initiates the metabolic switchover to the preferred in vivo carbon source, fatty acids. We hypothesize that WhiB3 is an intracellular redox sensor that maintains redox homeostasis. To better understand the mechanism of this physiological event, we will identify the WhiB3 amino acids necessary for effective iron-sulfur (Fe-S) reconstitution, and use electron paramagnetic resonance spectroscopy (EPR) to characterize these mutated proteins. We will use genome-wide expression profiling to examine the contribution of WhiB3 in maintaining redox homeostasis, and analyze the metabolite profile of MtbwhiB3. These studies will characterize WhiB3 as a potential target for interventions that may abolish virulence, but not growth. These studies will also provide insight into understanding how Mtb subvert host immunity.

Public Health Relevance

The ability of small numbers of Mycobacterium tuberculosis (Mtb) to lay dormant in humans without causing disease is central to the biology of the disease. We will examine how Mtb enters a persistent state, and hope to translate this knowledge into new interventions to reduce tuberculosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI058131-07
Application #
8059673
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Lacourciere, Karen A
Project Start
2003-12-01
Project End
2015-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
7
Fiscal Year
2011
Total Cost
$362,588
Indirect Cost
Name
University of Alabama Birmingham
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Saini, Vikram; Cumming, Bridgette M; Guidry, Loni et al. (2016) Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis. Cell Rep 14:572-585
Lamprecht, Dirk A; Finin, Peter M; Rahman, Md Aejazur et al. (2016) Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat Commun 7:12393
Chinta, Krishna C; Saini, Vikram; Glasgow, Joel N et al. (2016) The emerging role of gasotransmitters in the pathogenesis of tuberculosis. Nitric Oxide 59:28-41
Gopal, Radha; Monin, Leticia; Torres, Diana et al. (2013) S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am J Respir Crit Care Med 188:1137-46
Saini, Vikram; Farhana, Aisha; Glasgow, Joel N et al. (2012) Iron sulfur cluster proteins and microbial regulation: implications for understanding tuberculosis. Curr Opin Chem Biol 16:45-53
Chawla, Manbeena; Parikh, Pankti; Saxena, Alka et al. (2012) Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol 85:1148-65
Farhana, Aisha; Saini, Vikram; Kumar, Ashwani et al. (2012) Environmental heme-based sensor proteins: implications for understanding bacterial pathogenesis. Antioxid Redox Signal 17:1232-45
Saini, Vikram; Farhana, Aisha; Steyn, Adrie J C (2012) Mycobacterium tuberculosis WhiB3: a novel iron-sulfur cluster protein that regulates redox homeostasis and virulence. Antioxid Redox Signal 16:687-97
Kumar, Ashwani; Farhana, Aisha; Guidry, Loni et al. (2011) Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Rev Mol Med 13:e39
Mai, Deborah; Jones, Jennifer; Rodgers, John W et al. (2011) A screen to identify small molecule inhibitors of protein-protein interactions in mycobacteria. Assay Drug Dev Technol 9:299-310

Showing the most recent 10 out of 17 publications