Hookworm infection is a leading cause of malnutrition and anemia in the developing world. More than one billion people are infected with these bloodfeeding nematode parasites, which attach to the intestinal mucosa and feed from lacerated capillaries. Hookworms may survive for years within the intestine, despite the presence of a host inflammatory response. To date, little is known about the mechanisms by which adult hookworms block components of the innate and acquired host immune responses in order to survive. A eDNA corresponding to a homologue of the mammalian cytokine Macrophage Migration Inhibitory Factor (MIF) has recently been cloned from the human hookworm Ancylostoma ceylanicum. Preliminary data suggest that the recombinant A. ceylanicum MIF (rAceMIF) is enzymatically active and competes with the human protein for binding to the recently identified MIF receptor CD74. We hypothesize that the hookworm MIF homologue effectively modulates the host immune response in order to facilitate parasite survival at the mucosal surface.
The aim of this project is to characterize the role of MIF in the pathogenesis of hookworm infection and disease. The mechanism of action of AceMIF will be characterized using in vitro studies of MIF function, including tautomerase activity, macrophage migration, and pro-inflammatory cell signaling. The kinetics ofrAceMIF binding to CD74 will be characterized, and its three dimensional structure will be elucidated using X-ray crystallography. AceMIF gene expression will be characterized in vivo in order to document its stage specificity, and the source of AceMIF production within the adult hookworm will be characterized by immunohistochemistry. Parallel studies will analyze tissue specific expression of host MIF in response to hookworm infection using a fully permissive animal model of A. ceylanicum. The role of AceMIF in the pathogenesis of hookworm anemia and growth delay will also be characterized using both vaccine and targeted gene silencing approaches. The response to immunization will be monitored by ELISA, and the degree to which antibodies directed at AceMIF protect against hookworm anemia and growth delay will be assessed using clinical parameters and worm burden measurements. These studies will characterize this novel helminth homologue of a multi functional human cytokine, ultimately determining the role of MIF in the pathogenesis of hookworm disease.