Staphylococcus aureus is a ubiquitous Gram-positive organism implicated in a spectrum of diseases; from benign, localized skin infections to life-threatening, systemic illnesses including pneumonia, sepsis and menstrual or non-menstrual toxic shock syndromes (TSS). The virulence and pathogenicity of S. aureus is attributed to its several exotoxins. The superantigen exotoxins (SAg) are important amongst them because SAg are the most potent activators of T lymphocytes known. Certain SAg could also be used as biological weapons. Thus, SAg are important from many perspectives. Nonetheless, the molecular pathways by which SAg participate in the disease pathogenesis have not been completely understood due to lack of good animal models. The conventional mouse strains are resistant to TSS due to poor binding of SAg to mouse MHC class II. However, SAg binds more efficiently to human MHC (called HLA) class I molecules. Therefore, mice transgenically expressing HLA class II molecules readily succumb to the pathogenic effects of SAg delivered through different routes and to S. aureus infection. As the disease caused by SAg in HLA class II (HLA-DR3) transgenic mice also closely mimics the syndrome in humans, they are ideal models. Using this mouse model we have demonstrated that interferon-gamma (IFN-?) dependent small intestinal pathology plays a critical role in lethality associated with TSS. However, the molecular pathways by which INF-? contributes to lethality in TSS, either directly or indirectly through other mediators, are not clear. Therefore, it is proposed to (1) Delineate th mechanisms by which IFN-? plays a lethal role in staphylococcal SAg-induced TSS. This will be achieved by generating bone marrow chimeras between HLA-DR3.IFN-?R+/+ and HLA-DR3.IFN-?R-/- mice. Bone marrow chimeras will be challenged with SEB and several molecular pathways will be compared. However, IFN-? is also important for immunity S. aureus infections. Therefore, it is proposed to (2) Determine the role of IFN-? in the pathogenesis and immunity to MRSA-induced pneumonia and sepsis. This wil be accomplished by inducing pneumonia and sepsis in HLA-DR3.IFN-?+/+ and HLA-DR3.IFN-?R-/- mice with the MRSA isolate, USA300. Several bacteriological, immunological, biochemical and pathological parameters including mortality will be compared between these two lines of mice. It is known that HLA class II polymorphisms could strongly influence the magnitude of T cell activation and IFN-? production in response to streptococcal SAg. However, the impact of HLA-DR and HLA-DQ polymorphisms on staphylococcal SAg-driven immuneresponses has not been investigated. Therefore, it is proposed to (3) Determine the extent to which staphylococcal superantigen-induced IFN-? production is modulated by HLA class II polymorphisms thereby influencing the outcome of MRSA-induced pneumonia and sepsis. This will be investigated by a series of in vivo studies using transgenic mice expressing HLA-DR2, HLA-DR3, HLA-DR4, HLA-DQ2, HLA-DQ6 or HLA-DQ8 molecules.

Public Health Relevance

Staphylococcus aureus is a common, yet potentially dangerous bacterium. The occurrence of serious infections caused by the antibiotic resistant strains is increasing worldwide, which could be partly attributed to the ability of these strains t produce several harmful toxins. This study investigates the mechanisms of action of one such family of toxins called 'superantigens'. Also, the reasons as to why and how certain individuals might have different outcomes following an S. aureus infection will be studied using our humanized mice.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI068741-09
Application #
8826672
Study Section
Immunity and Host Defense (IHD)
Program Officer
Davidson, Wendy F
Project Start
2006-04-01
Project End
2016-04-30
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
9
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Karau, Melissa J; Tilahun, Mulualem E; Krogman, Ashton et al. (2017) Passive therapy with humanized anti-staphylococcal enterotoxin B antibodies attenuates systemic inflammatory response and protects from lethal pneumonia caused by staphylococcal enterotoxin B-producing Staphylococcus aureus. Virulence 8:1148-1159
Krogman, A; Tilahun, A; David, C S et al. (2017) HLA-DR polymorphisms influence in vivo responses to staphylococcal toxic shock syndrome toxin-1 in a transgenic mouse model. HLA 89:20-28
Chowdhary, Vaidehi R; Krogman, Ashton; Tilahun, Ashenafi Y et al. (2017) Concomitant Disruption of CD4 and CD8 Genes Facilitates the Development of Double Negative ?? TCR+ Peripheral T Cells That Respond Robustly to Staphylococcal Superantigen. J Immunol 198:4413-4424
Krogman, Ashton L; Chowdhary, Vaidehi; Rajagopalan, Govindarajan (2016) Mini-Osmotic Pump Infusion Model to Investigate the Systemic Effects of Chronic Continuous Exposure to Staphylococcal Superantigen in Mice. Methods Mol Biol 1396:109-114
Kim, Choon K; Karau, Melissa J; Greenwood-Quaintance, Kerryl E et al. (2015) Superantigen-Producing Staphylococcus aureus Elicits Systemic Immune Activation in a Murine Wound Colonization Model. Toxins (Basel) 7:5308-19
Chung, Jin-Won; Greenwood-Quaintance, Kerryl E; Karau, Melissa J et al. (2015) Superantigens produced by catheter-associated Staphylococcus aureus elicit systemic inflammatory disease in the absence of bacteremia. J Leukoc Biol 98:271-81
Kim, Choon K; Karau, Melissa J; Greenwood-Quaintance, Kerryl E et al. (2015) Superantigens in Staphylococcus aureus isolated from prosthetic joint infection. Diagn Microbiol Infect Dis 81:201-7
Tilahun, Ashenafi Y; Karau, Melissa; Ballard, Alessandro et al. (2014) The impact of Staphylococcus aureus-associated molecular patterns on staphylococcal superantigen-induced toxic shock syndrome and pneumonia. Mediators Inflamm 2014:468285
Chung, Jin-Won; Karau, Melissa J; Greenwood-Quaintance, Kerryl E et al. (2014) Superantigen profiling of Staphylococcus aureus infective endocarditis isolates. Diagn Microbiol Infect Dis 79:119-24
Tilahun, Ashenafi Y; Chowdhary, Vaidehi R; David, Chella S et al. (2014) Systemic inflammatory response elicited by superantigen destabilizes T regulatory cells, rendering them ineffective during toxic shock syndrome. J Immunol 193:2919-30

Showing the most recent 10 out of 20 publications